Skip to main content
Log in

Improvement in the physicochemical properties of titanium dioxide by surface modification with 1H-1-carboxylate of isopropyl-imidazole and 3-aminopropyltrimethoxysilane: case study—as a filler in polylactic acid composites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This work presents the surface functionalization of titanium dioxide nanoparticles with 1H-1-carboxylate of isopropyl-imidazole and 3-aminopropyltrimethoxysilane. The surface and thermal properties of titanium dioxide are characterized by nuclear magnetic resonance, Fourier-transform infrared spectroscopy, zeta potential, X-ray diffraction, and differential scanning calorimetry. The functionalization mentioned above improves the dispersibility of titanium dioxide in polymeric matrices such as polylactic acid. Polylactic acid compounds are extruded with these nanoparticles; their crystallization capacity is studied by non-isothermal crystallization. The results obtained indicate the successful binding of organic structures to titanium dioxide. Likewise, the dispersion improves when the nanoparticle is silanized, reducing agglomeration when the isopropyl-imidazole 1H-1-carboxylate is bound to the organosilicon coating. DSC measurements show that isopropyl imidazole 1H-1-carboxylate adhered to the organosilicon coating exhibits excellent thermal stability up to 300 °C. Finally, the photo-degradation of the composites is studied by Fourier-transform infrared spectroscopy and atomic force microscopy, showing that the use of isopropyl-imidazole 1H-1-carboxylate inhibits the degradation of the polylactic acid composite compared to the pure polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Diebold U. The surface science of titanium dioxide. Surf Sci Rep. 2003;48:53–229.

    Article  CAS  Google Scholar 

  2. Shiraishi F, Ueno M, Chand R, Shibata Y, Luitel HN. Effect of silanization of titanium dioxide on photocatalytic decomposition of 2,4-dinitropheonol under irradiation with artificial UV light and sunlight. J Chem Technol Biotechnol. 2014;89:81–7.

    Article  CAS  Google Scholar 

  3. Solís-Gómez A, Neira-Velázquez MG, Morales J, Sánchez-Castillo MA, Pérez E. Improving stability of TiO2 particles in water by RF-plasma polymerization of poly(acrylic acid) on the particle surface. Colloids Surf A Physicochem Eng Aspects. 2014;451:66–74.

    Article  Google Scholar 

  4. González-Rodríguez V, Lizeth Zapata-Tello D, Vallejo-Montesinos J, Zárraga Núñez R, Gonzalez-Calderon JA, Pérez E. Improving titanium dioxide dispersion in water through surface functionalization by a dicarboxylic acid. J Dispers Sci Technol. 2018;40:1–7.

    Google Scholar 

  5. Bonhôte P, Gogniat E, Grätzel M, Ashrit PV. Novel electrochromic devices based on complementary nanocrystalline TiO2 and WO3 thin films. Thin Solid Films. 1999;350:269–75.

    Article  Google Scholar 

  6. Altan M, Yildirim H. Mechanical and morphological properties of polypropylene and high density polyethylene matrix composites reinforced with surface modified nano sized TiO2 particles. Int J Mater Metall Eng. 2010;4:231–7.

    Google Scholar 

  7. Gonzalez-Calderon JA, Vallejo-Montesinos J, Almendarez-Camarillo A, Montiel R, Pérez E. Non-isothermal crystallization analysis of isotactic polypropylene filled with titanium dioxide particles modified by a dicarboxylic acid. Thermochim Acta [Internet]. 2016;631:8–17. https://doi.org/10.1016/j.tca.2016.03.007.

    Article  CAS  Google Scholar 

  8. Yang C, Zhu B, Wang J, Qin Y. Structural changes and nano-TiO2 migration of poly(lactic acid)-based food packaging film contacting with ethanol as food simulant. Int J Biol Macromol. 2019;139:85–93.

    Article  CAS  PubMed  Google Scholar 

  9. Ramesan MT, Sampreeth T. In situ synthesis of polyaniline/Sm-doped TiO2 nanocomposites: evaluation of structural, morphological, conductivity studies and gas sensing applications. J Mater Sci Mater Electron. 2018;29:4301–11.

    Article  CAS  Google Scholar 

  10. Suhailath K, Ramesan MT. Investigations on the structural, mechanical, thermal, and electrical properties of Ce-doped TiO2 /poly(n-butyl methacrylate) nanocomposites. J Therm Anal Calorim. 2019;135:2159–69.

    Article  CAS  Google Scholar 

  11. Suhailath K, Ramesan MT. Effect of nano-ce-doped TiO2 on AC conductivity and DC conductivity modeling studies of poly (n-butyl methacrylate). J Electron Mater. 2018;47:6484–93.

    Article  CAS  Google Scholar 

  12. Kaseem M, Hamad K, Rehman ZU. Review of recent advances in polylactic acid/TiO2 composites. Materials. 2019;12:3659.

    Article  CAS  PubMed Central  Google Scholar 

  13. Tu-morn M, Pairoh N, Sutapun W, Trongsatitkul T. Effects of titanium dioxide nanoparticle on enhancing degradation of polylactic acid/low density polyethylene blend films. Mater Today Proc. 2019;17:2048–61.

    Article  CAS  Google Scholar 

  14. Henderson MA. The interaction of water with solid surfaces: fundamental aspects revisited. Surf Sci Rep. 2002;46:1–308.

    Article  CAS  Google Scholar 

  15. Clayton J. Pigment/dispersant interactions in water-based coatings. Surf Coat Int. 1997;80:414–20.

    Article  CAS  Google Scholar 

  16. Vallejo-Montesinos J, Muñoz UM, Gonzalez-Calderon JA. Mechanical properties, crystallization and degradation of polypropylene due to nucleating agents, fillers and additives. Polypropyl Propert Uses Benefits. 2016;4:83–140.

  17. Todesco RV, Ergenc N, Stabilizers L, Stabilization L. Addit Plast Appl. 2002;56:225–38.

    CAS  Google Scholar 

  18. Balabanovich AI, Klimovtsova IA, Prokopovich VP, Prokopchuk NR. Thermal stability and thermal decomposition study of hindered amine light stabilizers. Thermochim Acta. 2007;459:1–8.

    Article  CAS  Google Scholar 

  19. Maringer L, Roiser L, Wallner G, Nitsche D, Buchberger W. The role of quinoid derivatives in the UV-initiated synergistic interaction mechanism of HALS and phenolic antioxidants. Polym Degrad Stab. 2016;131:91–7.

    Article  CAS  Google Scholar 

  20. Zhang W, Liu D, Hua C, Zhao J, Chen B, Gou X. Synthesis and properties of multifunctional nitroxyl radical hindered-amine light stabilizers. Heterocycl Commun. 2015;21:77–81.

    Article  Google Scholar 

  21. Reingruber E, Buchberger W. Analysis of polyolefin stabilizers and their degradation products. J Sep Sci. 2010;33:3463–75.

    Article  CAS  PubMed  Google Scholar 

  22. Step EN, Turro NJ, Gande ME, Klemchuk PP. Mechanism of polymer stabilization by hindered-amine light stabilizers (HALS) Model investigations of the interaction of peroxy radicals with HALS amines and amino ethers. Macromolecules. 1994;27:2529–39.

    Article  CAS  Google Scholar 

  23. Gijsman P. New synergists for hindered amine light stabilizers. Polymer (Guildf). 2002;43:1573–9.

    Article  CAS  Google Scholar 

  24. Chinelatto MA, Agnelli JAM, Canevarolo SV. Synthesis and photostabilizing performance of a polymeric HALS based on 1,2,2,6,6-pentamethylpiperidine and vinyl acetate. Polímeros. 2015;25:575–80.

    Article  CAS  Google Scholar 

  25. Zhao J, Milanova M, Warmoeskerken MMCG, Dutschk V. Surface modification of TiO2 nanoparticles with silane coupling agents. Colloids Surf A Physicochem Eng Aspects. 2012;413:273–9. https://doi.org/10.1016/j.colsurfa.2011.11.033.

    Article  CAS  Google Scholar 

  26. Ahangaran F, Navarchian AH. Recent advances in chemical surface modification of metal oxide nanoparticles with silane coupling agents: a review. Adv Colloid Interface Sci. 2020;286:102298.

    Article  CAS  PubMed  Google Scholar 

  27. Fuad MYA, Ismail Z, Ishak ZAM, Omar AKM. Application of rice husk ash as fillers in polypropylene: effect of titanate, zirconate and silane coupling agents. Eur Polymer J. 1995;31:885–93.

    Article  CAS  Google Scholar 

  28. Liu Y, Guo L, Wang W, Sun Y, Wang H. Modifying wood veneer with silane coupling agent for decorating wood fiber/high-density polyethylene composite. Construct Build Mater. 2019;224:691–9.

    Article  CAS  Google Scholar 

  29. Zheng W, Tang C, Xie J, Gui Y. Micro-scale effects of nano-SiO2 modification with silane coupling agents on the cellulose/nano-SiO2 interface. Nanotechnology. 2019;30:445701.

    Article  CAS  PubMed  Google Scholar 

  30. Ismail H, Mega L, Abdul Khalil HPS. Effect of a silane coupling agent on the properties of white rice husk ash-polypropylene/natural rubber composites. Polym Int. 2001;50:606–11.

    Article  CAS  Google Scholar 

  31. Zheng J, Han D, Ye X, Wu X, Wu Y, Wang Y, et al. Chemical and physical interaction between silane coupling agent with long arms and silica and its effect on silica/natural rubber composites. Polymer (Guildf). 2018;135:200–10.

    Article  CAS  Google Scholar 

  32. You S-L, Kelly JW. Highly efficient enantiospecific synthesis of imidazoline-containing amino acids using bis(triphenyl)oxodiphosphonium trifluoromethanesulfonate. Organ Lett Am Chem Soc. 2004;6:1681–3.

    CAS  Google Scholar 

  33. Wu Y-Q, Limburg DC, Wilkinson DE, Hamilton GS. Formation of nitrogen-containing heterocycles using di(imidazole-1-yl)methanimine. J Heterocycl Chem. 2009;40:191–3.

    Article  Google Scholar 

  34. Yavari I, Nematpour M, Ghanbari E. A tandem synthesis of 5-sulfonylimino-2-imidazolones from sulfonoketenimides and dialkyl azodicarboxylates. Mol Divers. 2014;18:721–5.

    Article  CAS  PubMed  Google Scholar 

  35. Alfonso M, Tárraga A, Molina P. Pyrrole, imidazole, and triazole derivatives as ion-pair recognition receptors. Tetrahedron Lett. 2016;57:3053–9.

    Article  CAS  Google Scholar 

  36. Biron E, Chatterjee J, Kessler H. Solid-phase synthesis of 1,3-azole-based peptides and peptidomimetics. Organ Lett Am Chem Soc. 2006;8:2417–20.

    CAS  Google Scholar 

  37. Li M, Zhang W, Wang W, He Q, Yin M, Qin X, et al. Imidazole improves cognition and balances Alzheimer’s-like intracellular calcium homeostasis in transgenic Drosophila model. Neurourol Urodyn. 2017;37:1250–7.

    Article  PubMed  Google Scholar 

  38. Maru MS and MKS. Synthesis, Characterization and antimicrobial evaluation of transition metal complexes of monodentate 2-(substituted phenyl)-1h-benzo [d] imidazoles. 2015;42:216–27

  39. Borhade AV, Tope DR, Gite SG. Synthesis, characterization and catalytic application of silica supported tin oxide nanoparticles for synthesis of 2,4,5-tri and 1,2,4,5-tetrasubstituted imidazoles under solvent-free conditions. Arab J Chem. 2017;10:S559–67.

    Article  CAS  Google Scholar 

  40. Zhang S, Ye J, Sun Y, Kang J, Liu J, Wang Y, et al. Electrospun fibrous mat based on silver (I) metal-organic frameworks-polylactic acid for bacterial killing and antibiotic-free wound dressing. Chem Eng J. 2020;390:124523.

    Article  CAS  Google Scholar 

  41. Li C, Ma C, Li J. Highly efficient flame retardant poly(lactic acid) using imidazole phosphate poly(ionic liquid). Polym Adv Technol. 2020;31:1765–75.

    Article  CAS  Google Scholar 

  42. Liu S, Qin S, He M, Zhou D, Qin Q, Wang H. Current applications of poly(lactic acid) composites in tissue engineering and drug delivery. Compos Part B Eng. 2020;199:108238.

    Article  CAS  Google Scholar 

  43. Zhong M, Zhang X, Yang DH, Zhao B, Xie Z, Zhou Z, et al. Zeolitic imidazole framework derived composites of nitrogen-doped porous carbon and reduced graphene oxide as high-efficiency cathode catalysts for Li-O2 batteries. Inorgan Chem Front. 2017;4:1533–8.

    Article  CAS  Google Scholar 

  44. Lunt J. Large-scale production, properties and commercial applications of polylactic acid polymers. Polym Degrad Stab. 1998;3910:145–52.

    Article  Google Scholar 

  45. Díaz-Pedraza A, Piñeros Castro Y, Ro T. Bi-layer materials based on thermoplastic corn starch, polylactic acid and modifiedpolypropylene. Revista Mexicana de Ingeniería Química. 2013;12:505–11.

    Google Scholar 

  46. Sun Z, Zhang L, Liang D, Xiao W, Lin J. Mechanical and thermal properties of PLA biocomposites reinforced by coir fibers. Int J Polym Sci. 2017;2017:1–9.

    Google Scholar 

  47. Elsawy MA, Kim KH, Park JW, Deep A. Hydrolytic degradation of polylactic acid (PLA) and its composites. Renew Sustain Energy Rev. 2017;79:1346–52.

    Article  CAS  Google Scholar 

  48. Lonkar SP, Kushwaha OS, Leuteritz A, Heinrich G, Singh RP. Self photostabilizing UV-durable MWCNT/polymer nanocomposites. RSC Adv. 2012;2:12255.

    Article  CAS  Google Scholar 

  49. Papadopoulos L, Terzopoulou Z, Zamboulis A, Klonos PA, Bikiaris DN, Kyritsis A, et al. Effects of Ag, ZnO and TiO2 nanoparticles at low contents on the crystallization, semi-crystalline morphology, interfacial phenomena and segmental dynamics of PLA. Mater Today Commun. 2021;27:102192.

    Article  Google Scholar 

  50. Terzopoulou Z, Klonos PA, Kyritsis A, Tziolas A, Avgeropoulos A, Papageorgiou GZ, et al. Interfacial interactions, crystallization and molecular mobility in nanocomposites of poly (lactic acid) filled with new hybrid inclusions based on graphene oxide and silica nanoparticles. Polymer (Guildf). 2019;166:1–12.

    Article  CAS  Google Scholar 

  51. Wang XJ, Huang Z, Wei MY, Lu T, Nong DD, Zhao JX, et al. Catalytic effect of nanosized ZnO and TiO2 on thermal degradation of poly(lactic acid) and isoconversional kinetic analysis. Thermochim Acta. 2019;672:14–24.

    Article  CAS  Google Scholar 

  52. Li W, Zhang C, Chi H, Li L, Lan T, Han P, et al. Development of antimicrobial packaging film made from poly(lactic acid) incorporating titanium dioxide and silver nanoparticles. Molecules. 2017;22:1170.

    Article  PubMed Central  Google Scholar 

  53. Raquez JM, Habibi Y, Murariu M, Dubois P. Polylactide (PLA)-based nanocomposites. Prog Polym Sci. 2013;38:1504–42.

    Article  CAS  Google Scholar 

  54. Amza CG, Zapciu A, Baciu F, Vasile MI, Popescu D. Aging of 3D printed polymers under sterilizing UV-C radiation. Polymers. 2021;13:1–16.

    Article  Google Scholar 

  55. Kuo CFJ, Lan WL, Chen CY, Tsai HC. Property modification and process parameter optimization design of polylactic acid composite materials. Part I: polylactic acid toughening and photo-degradation modification and optimized parameter design. Textile Res J. 2015;85:13–25.

    Article  Google Scholar 

  56. Can U, Kaynak C. Performance of polylactide against UV irradiation : synergism of an organic UV absorber with micron; 2020.

  57. Gonzalez-Calderon JA, Vallejo-Montesinos J, Martínez-Martínez HN, Cerecero-Enríquez R, López-Zamora L. Effect of chemical modification of titanium dioxide particles via silanization under properties of chitosan/potato-starch films. Revista Mexicana de Ingeniería Química. 2019;18:913–27.

    Article  CAS  Google Scholar 

  58. Avrami M. Kinetics of phase change II. Transformation-time relations for random distribution of nuclei. J Chem Phys. 1940;8:212–24.

    Article  CAS  Google Scholar 

  59. Avrami M. Granulation, phase change, and microstructure kinetics of phase change III. J Chem Phys. 1941;9:177–84.

    Article  CAS  Google Scholar 

  60. Avrami M. Kinetics of phase change. I: general theory. J Chem Phys. 1939;7:1103–12.

    Article  CAS  Google Scholar 

  61. Jeziorny A. Parameters characterizing the kinetics of the non-isothermal crystallization of poly(ethylene terephthalate) determined by d.s.c. Polymer (Guildf). 1978;19:1142–4.

    Article  CAS  Google Scholar 

  62. Liu T, Mo Z, Zhang H. Nonisothermal crystallization behavior of a novel poly(aryl ether ketone): PEDEKmK. J Appl Polym Sci. 1998;67:815–21.

    Article  CAS  Google Scholar 

  63. Wang J, Dou Q. Non-isothermal crystallization kinetics and morphology of isotactic polypropylene (iPP) nucleated with rosin-based nucleating agents. J Macromol Sci Part B Phys. 2007;46:987–1001.

    Article  CAS  Google Scholar 

  64. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci Part C Polym Sympos. 2007;6:183–95. https://doi.org/10.1002/polc.5070060121.

    Article  Google Scholar 

  65. Ek S, Iiskola EI, Niinisto L. Atomic layer deposition of amino-functionalized silica surfaces using N-(2-aminoethyl)-3-aminopropyltrimethoxysilane as a silylating agent. J Phys Chem B. 2004;108:9650–5.

    Article  CAS  Google Scholar 

  66. López-Zamora L, Martínez-Martínez HN, González-Calderón JA. Improvement of the colloidal stability of titanium dioxide particles in water through silicon based coupling agent. Mater Chem Phys. 2018;217:285–90.

    Article  Google Scholar 

  67. Ijadpanah-saravi H, Safari M, Khodadadi-darban A. Synthesis of titanium dioxide nanoparticles for photocatalytic degradation of cyanide in wastewater. Anal Lett. 2014;47:1772–82.

    Article  Google Scholar 

  68. Van Cong D, Trang NTT, Giang NV, Lam TD, Hoang T. Effect of TiO2-crystal forms on the photo-degradation of EVA/PLA blend under accelerated weather testing. J Electron Mater. 2016;45:2536–46.

    Article  Google Scholar 

  69. Nim B, Sreearunothai P, Opaprakasit P, Petchsuk A. Preparation and properties of electrospun fibers of titanium dioxide-loaded polylactide/polyvinylpyrrolidone blends. Appl Sci Eng Prog. 2019;12:52–8.

    Google Scholar 

  70. Rokbani H, Ajji A. Rheological properties of poly(lactic acid) solutions added with metal oxide nanoparticles for electrospinning. J Polym Environ. 2018;26:2555–65.

    Article  CAS  Google Scholar 

  71. Zhang Q, Lei H, Cai H, Han X, Lin X, Qian M, et al. Improvement on the properties of microcrystalline cellulose/polylactic acid composites by using activated biochar. J Clean Prod. 2020;252:119898.

    Article  CAS  Google Scholar 

  72. Luo Y, Cao Y, Guo G. Effects of TiO2 nanoparticles on the photo-degradation of poly(lactic acid). J Appl Polym Sci. 2018;135:1–8.

    Article  Google Scholar 

  73. Therias S, Larché JF, Bussière PO, Gardette JL, Murariu M, Dubois P. Photochemical behavior of polylactide/ZnO nanocomposite films. Biomacromol. 2012;13:3283–91.

    Article  CAS  Google Scholar 

  74. Copinet A, Bertrand C, Govindin S, Coma V, Couturier Y. Effects of ultraviolet light (315 nm), temperature and relative humidity on the degradation of polylactic acid plastic films. Chemosphere. 2004;55:763–73.

    Article  CAS  PubMed  Google Scholar 

  75. Marra A, Cimmino S, Silvestre C. Effect of TiO2 and ZnO on PLA degradation in various media. Adv Mater Sci. 2017;2:1–8.

    Article  Google Scholar 

Download references

Acknowledgements

The authors want to thank CONACyT for funding the project CF2019 265239, which made this work possible. J.A. Gonzalez-Calderon thank to CONACYT by the support of the Catedras CONACYT program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Vallejo Montesinos.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González Calderón, J.A., Austria Gutiérrez, A., Sanchez, G. et al. Improvement in the physicochemical properties of titanium dioxide by surface modification with 1H-1-carboxylate of isopropyl-imidazole and 3-aminopropyltrimethoxysilane: case study—as a filler in polylactic acid composites. J Therm Anal Calorim 147, 12365–12382 (2022). https://doi.org/10.1007/s10973-022-11476-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11476-4

Keywords

Navigation