Skip to main content
Log in

Heat transfer enhancement of ice storage systems: a systematic review of the literature

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermal resistance of ice slows down the charging/discharging process of ice storage systems which results in long operating cycles and thus high energy consumption. To overcome this drawback, various heat transfer enhancement methods have been investigated in the literature. In this paper, a systematic review of the studies dealing with heat transfer enhancement methods is presented. The enhancement methods covered in this review paper include adding fins, embedding metal foam, dispersing nano-additives as well as hybrid methods combining at least two of the mentioned techniques. The literature review shows the significant potential of each enhancement method in reducing the charging/discharging time. Hybrid enhancement methods showed higher impact for reducing the time of operating cycles. Fins combined with metal foam are shown to achieve the highest enhancement with heat transfer rate increase of 200.9% but a trade-off is often required to keep the storage capacity. On the other hand, the review shed light on limitations of the literature, research gaps, and future challenges. The future of heat transfer enhancement methods is headed toward optimization approaches that can play a significant role in improving the performance of ice storage units.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

AC:

Air conditioning

CFD:

Computational fluid dynamics

CTES:

Cold thermal energy storage

COP:

Coefficient of performance

FEM:

Finite element method

FMT:

Full melting time

FST:

Full solidification time

HNP:

Hybrid nanoparticles

HTF:

Heat transfer fluid

ISS:

Ice storage system

LB:

Lattice Boltzmann

NP:

Nanoparticles

NPCM:

Nano-enhanced phase change material

PCM:

Phase change material

RSM:

Response surface method

References

  1. Wonorahardjo S, Sutjahja IM, Tunçbilek E, Achsani RA, Arıcı M, Rahmah N. PCM-based passive air conditioner in urban houses for the tropical climates: an experimental analysis on the stratum air circulation. Build Environ. 2021;192:107632. https://doi.org/10.1016/j.buildenv.2021.107632.

    Article  Google Scholar 

  2. Teggar M, Mezaache EH. Numerical investigation of a PCM heat exchanger for latent cool storage. Energy Procedia. 2013;36:1310–9. https://doi.org/10.1016/j.egypro.2013.07.149.

    Article  Google Scholar 

  3. Boulaktout N, Mezaache EH, Teggar M, Arıcı M, Ismail KAR, Yıldız Ç. Effect of fin orientation on melting process in horizontal double pipe thermal energy storage systems. J Energy Resour Technol. 2021;143(7):070904. https://doi.org/10.1115/1.4050904.

    Article  Google Scholar 

  4. Oró E, Miró L, Farid MM, Cabeza LF. Thermal analysis of a low temperature storage unit using phase change materials without refrigeration system. Int J Refrig. 2012;35(6):1709–14. https://doi.org/10.1016/j.ijrefrig.2012.05.004.

    Article  CAS  Google Scholar 

  5. Wang F, Maidment G, Missenden J, Tozer R. The novel use of phase change materials in refrigeration plant. Part 1: experimental investigation. Appl Therm Eng. 2007;27(17):2893–901. https://doi.org/10.1016/j.applthermaleng.2005.06.011.

    Article  Google Scholar 

  6. Yusufoglu Y, Apaydin T, Yilmaz S, Paksoy HO. Improving performance of household refrigerators by incorporating phase change materials. Int J Refrig. 2015;57:173–85. https://doi.org/10.1016/j.ijrefrig.2015.04.020.

    Article  Google Scholar 

  7. Abdolmaleki L, Sadrameli SM, Pirvaram A. Application of environmental friendly and eutectic phase change materials for the efficiency enhancement of household freezers. Renew Energy. 2020;145:233–41. https://doi.org/10.1016/j.renene.2019.06.035.

    Article  CAS  Google Scholar 

  8. Alzuwaid F, Ge YT, Tassou SA, Raeisi A, Gowreesunker L. The novel use of phase change materials in a refrigerated display cabinet: an experimental investigation. Appl Therm Eng. 2015;75:770–8. https://doi.org/10.1016/j.applthermaleng.2014.10.028.

    Article  Google Scholar 

  9. Purohit N, Dasgupta MS. Thermal storage material enhanced refrigerated display cabinet. Mater Today Proc. 2020;28:510–4. https://doi.org/10.1016/j.matpr.2019.12.210.

    Article  Google Scholar 

  10. Elarem R, Mellouli S, Abhilash E, Jemni A. Performance analysis of a household refrigerator integrating a PCM heat exchanger. Appl Therm Eng. 2017;125:1320–33. https://doi.org/10.1016/j.applthermaleng.2017.07.113.

    Article  Google Scholar 

  11. Ghahramani Zarajabad O, Ahmadi R. Employment of finned PCM container in a household refrigerator as a cold thermal energy storage system. Therm Sci Eng Prog. 2018;7:115–24. https://doi.org/10.1016/j.tsep.2018.06.002.

    Article  Google Scholar 

  12. Said MA, Hassan H. Impact of energy storage of new hybrid system of phase change materials combined with air-conditioner on its heating and cooling performance. J Energy Storage. 2021;36:102400. https://doi.org/10.1016/j.est.2021.102400.

    Article  Google Scholar 

  13. Nie B, She X, Du Z, Xie C, Li Y, He Z, et al. System performance and economic assessment of a thermal energy storage based air-conditioning unit for transport applications. Appl Energy. 2019;251:113254. https://doi.org/10.1016/j.apenergy.2019.05.057.

    Article  Google Scholar 

  14. Hoseini Rahdar M, Emamzadeh A, Ataei A. A comparative study on PCM and ice thermal energy storage tank for air-conditioning systems in office buildings. Appl Therm Eng. 2016;96:391–9. https://doi.org/10.1016/j.applthermaleng.2015.11.107.

    Article  Google Scholar 

  15. Erdemir D, Altuntop N. Effect of encapsulated ice thermal storage system on cooling cost for a hypermarket. Int J Energy Res. 2018;42(9):3091–101. https://doi.org/10.1002/er.3971.

    Article  Google Scholar 

  16. Akyurt M, Zaki G, Habeebullah B. Freezing phenomena in ice–water systems. Energy Convers Manag. 2002;43(14):1773–89. https://doi.org/10.1016/S0196-8904(01)00129-7.

    Article  CAS  Google Scholar 

  17. Safari A, Saidur R, Sulaiman FA, Xu Y, Dong J. A review on supercooling of phase change materials in thermal energy storage systems. Renew Sustain Energy Rev. 2017;70:905–19. https://doi.org/10.1016/j.rser.2016.11.272.

    Article  CAS  Google Scholar 

  18. Teggar M, Arıcı M, Mert MS, Mousavi Ajarostaghi SS, Niyas H, Tunçbilek E, et al. A comprehensive review of micro/nano enhanced phase change materials. J Therm Anal Calorim. 2022;147(6):3989–4016. https://doi.org/10.1007/s10973-021-10808-0.

    Article  CAS  Google Scholar 

  19. Teggar M, Ajarostaghi SSM, Yıldız Ç, Arıcı M, Ismail KAR, Niyas H, et al. Performance enhancement of latent heat storage systems by using extended surfaces and porous materials: a state-of-the-art review. J Energy Storage. 2021;44:103340. https://doi.org/10.1016/j.est.2021.103340.

    Article  Google Scholar 

  20. Eames IW, Adref KT. Freezing and melting of water in spherical enclosures of the type used in thermal (ice) storage systems. Appl Therm Eng. 2002;22(7):733–45. https://doi.org/10.1016/S1359-4311(02)00026-1.

    Article  CAS  Google Scholar 

  21. Nguyen TH, Vasseur P, Robillard L. Natural convection between horizontal concentric cylinders with density inversion of water for low Rayleigh numbers. Int J Heat Mass Transf. 1982;25(10):1559–68. https://doi.org/10.1016/0017-9310(82)90034-5.

    Article  Google Scholar 

  22. Gebhart B, Mollendorf JC. Buoyancy-induced flows in water under conditions in which density extrema may arise. J Fluid Mech. 1978;89(4):673–707. https://doi.org/10.1017/S0022112078002803.

    Article  CAS  Google Scholar 

  23. Mazzoni S, Sze JY, Nastasi B, Ooi S, Desideri U, Romagnoli A. A techno-economic assessment on the adoption of latent heat thermal energy storage systems for district cooling optimal dispatch and operations. Appl Energy. 2021;289:116646. https://doi.org/10.1016/j.apenergy.2021.116646.

    Article  Google Scholar 

  24. MacPhee D, Dincer I. Performance assessment of some ice TES systems. Int J Therm Sci. 2009;48(12):2288–99. https://doi.org/10.1016/j.ijthermalsci.2009.03.012.

    Article  CAS  Google Scholar 

  25. Zhang W, Yu J, Zhao A, Zhou X. Predictive model of cooling load for ice storage air-conditioning system by using GBDT. Energy Rep. 2021;7:1588–97. https://doi.org/10.1016/j.egyr.2021.03.017.

    Article  Google Scholar 

  26. Ismail KAR, Henrı́quez JR,. Numerical and experimental study of spherical capsules packed bed latent heat storage system. Appl Therm Eng. 2002;22(15):1705–16. https://doi.org/10.1016/S1359-4311(02)00080-7.

    Article  CAS  Google Scholar 

  27. Ismail KAR, Quispe OC, Henríquez JR. A numerical and experimental study on a parallel plate ice bank. Appl Therm Eng. 1999;19(2):163–93. https://doi.org/10.1016/S1359-4311(98)00024-6.

    Article  Google Scholar 

  28. Laouer A, Arıcı M, Teggar M, Bouabdallah S, Yıldız Ç, Ismail KAR, et al. Effect of magnetic field and nanoparticle concentration on melting of Cu–ice in a rectangular cavity under fluctuating temperatures. J Energy Storage. 2021;36:102421. https://doi.org/10.1016/j.est.2021.102421.

    Article  Google Scholar 

  29. Ismail KAR, Henríquez JR, da Silva TM. A parametric study on ice formation inside a spherical capsule. Int J Therm Sci. 2003;42(9):881–7. https://doi.org/10.1016/S1290-0729(03)00060-7.

    Article  CAS  Google Scholar 

  30. Habeebullah BA. An experimental study on ice formation around horizontal long tubes. Int J Refrig. 2007;30(5):789–97. https://doi.org/10.1016/j.ijrefrig.2006.12.007.

    Article  Google Scholar 

  31. Ismail KAR, de Jesus AB. Parametric study of solidification of PCM around a cylinder for ice-bank applications. Int J Refrig. 2001;24(8):809–22. https://doi.org/10.1016/S0140-7007(00)00059-1.

    Article  CAS  Google Scholar 

  32. Alawadhi EM. A solidification process with free convection of water in an elliptical enclosure. Energy Convers Manag. 2009;50(2):360–4. https://doi.org/10.1016/j.enconman.2008.09.015.

    Article  Google Scholar 

  33. Sugawara M, Beer H. Numerical analysis for freezing/melting around vertically arranged four cylinders. Heat Mass Transf. 2009;45(9):1223–31. https://doi.org/10.1007/s00231-009-0492-y.

    Article  CAS  Google Scholar 

  34. Sugawara M, Komatsu Y, Beer H. Melting of ice stuck on cylinders placed horizontally in a water flowing duct. Heat Mass Transf. 2016;52(4):693–700. https://doi.org/10.1007/s00231-015-1578-3.

    Article  CAS  Google Scholar 

  35. Ismail KAR, Filho LMDS, Lino FAM. Solidification of PCM around a curved tube. Int J Heat Mass Transf. 2012;55(7):1823–35. https://doi.org/10.1016/j.ijheatmasstransfer.2011.11.031.

    Article  CAS  Google Scholar 

  36. Oiwake S, Inaba H. Freezing fracture of curved water pipes: 1st report, freezing behavior of 180° curved pipes. Bull JSME. 1986;29(253):2151–5. https://doi.org/10.1299/jsme1958.29.2151.

    Article  CAS  Google Scholar 

  37. Sang WH, Lee YT, Chung JD, Kim ST, Kim T, Oh C-H, et al. Efficient numerical approach for simulating a full scale vertical ice-on-coil type latent thermal storage tank. Int Commun Heat Mass Transf. 2016;78:29–38. https://doi.org/10.1016/j.icheatmasstransfer.2016.08.011.

    Article  Google Scholar 

  38. Zhu Y, Zhang Y. Modeling of thermal processes for internal melt ice-on-coil tank including ice–water density difference. Energy Build. 2001;33(4):363–70. https://doi.org/10.1016/S0378-7788(00)00118-3.

    Article  Google Scholar 

  39. Mousavi Ajarostaghi SS, Sedighi K, Delavar MA, Poncet S. Influence of geometrical parameters arrangement on solidification process of ice-on-coil storage system. SN Appl Sci. 2019;2(1):109. https://doi.org/10.1007/s42452-019-1912-3.

    Article  Google Scholar 

  40. Mousavi Ajarostaghi SS, Sedighi K, Aghajani Delavar M, Poncet S. Numerical study of a horizontal and vertical shell and tube ice storage systems considering three types of tube. Appl Sci. 2020;10(3):1059. https://doi.org/10.3390/app10031059.

    Article  CAS  Google Scholar 

  41. Afsharpanah F, Mousavi Ajarostaghi SS, Sedighi K. The influence of geometrical parameters on the ice formation enhancement in a shell and double coil ice storage system. SN Appl Sci. 2019;1(10):1264. https://doi.org/10.1007/s42452-019-1317-3.

    Article  Google Scholar 

  42. Pakzad K, Mousavi Ajarostaghi SS, Sedighi K. Numerical simulation of solidification process in an ice-on-coil ice storage system with serpentine tubes. SN Appl Sci. 2019;1(10):1258. https://doi.org/10.1007/s42452-019-1316-4.

    Article  CAS  Google Scholar 

  43. Mousavi Ajarostaghi SS, Poncet S, Sedighi K, Aghajani Delavar M. Numerical modeling of the melting process in a shell and coil tube ice storage system for air-conditioning application. Appl Sci. 2019;9(13):2726. https://doi.org/10.3390/app9132726.

    Article  Google Scholar 

  44. Abdelrahman HE, Refaey HA, Alotaibi A, Abdel-Aziz AA, Abd Rabbo MF. Experimental investigations on the thermal performance of an ice storage system using twin concentric helical coil. Appl Therm Eng. 2020;179:115737. https://doi.org/10.1016/j.applthermaleng.2020.115737.

    Article  Google Scholar 

  45. López-Navarro A, Biosca-Taronger J, Torregrosa-Jaime B, Corberán JM, Bote-García JL, Payá J. Experimental investigations on the influence of ice floating in an internal melt ice-on-coil tank. Energy Build. 2013;57:20–5. https://doi.org/10.1016/j.enbuild.2012.10.040.

    Article  Google Scholar 

  46. Zhao X, Jiaqiang J, Zhang Z, Chen J, Liao G, Zhang F, et al. A review on heat enhancement in thermal energy conversion and management using field synergy principle. Appl Energy. 2020;257:113995. https://doi.org/10.1016/j.apenergy.2019.113995.

    Article  Google Scholar 

  47. Mohd Amin NA, Bruno F, Belusko M. Investigation of conducting pins in sphere filled with phase change material for enhancing heat transfer in thermal energy storage. Adv Mater Res. 2012;472–475:1693–7. https://doi.org/10.4028/www.scientific.net/AMR.472-475.1693.

    Article  CAS  Google Scholar 

  48. Xie J, Yuan C. Numerical study of thin layer ring on improving the ice formation of building thermal storage system. Appl Therm Eng. 2014;69(1):46–54. https://doi.org/10.1016/j.applthermaleng.2014.04.053.

    Article  Google Scholar 

  49. Xie J, Yuan C. Parametric study of ice thermal storage system with thin layer ring by Taguchi method. Appl Therm Eng. 2016;98:246–55. https://doi.org/10.1016/j.applthermaleng.2015.12.038.

    Article  Google Scholar 

  50. Jannesari H, Abdollahi N. Experimental and numerical study of thin ring and annular fin effects on improving the ice formation in ice-on-coil thermal storage systems. Appl Energy. 2017;189:369–84. https://doi.org/10.1016/j.apenergy.2016.12.064.

    Article  Google Scholar 

  51. Hamzeh HA, Miansari M. Numerical study of tube arrangement and fin effects on improving the ice formation in ice-on-coil thermal storage systems. Int Commun Heat Mass Transf. 2020;113:104520. https://doi.org/10.1016/j.icheatmasstransfer.2020.104520.

    Article  Google Scholar 

  52. Huang Y, Sun Q, Yao F, Zhang C. Performance optimization of a finned shell-and-tube ice storage unit. Appl Therm Eng. 2020;167:114788. https://doi.org/10.1016/j.applthermaleng.2019.114788.

    Article  Google Scholar 

  53. Zhang C, Sun Q, Chen Y. Solidification behaviors and parametric optimization of finned shell-tube ice storage units. Int J Heat Mass Transf. 2020;146:118836. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118836.

    Article  Google Scholar 

  54. Talukdar S, Afroz HMM, Hossain MA, Aziz MA, Hossain MM. Heat transfer enhancement of charging and discharging of phase change materials and size optimization of a latent thermal energy storage system for solar cold storage application. J Energy Storage. 2019;24:100797. https://doi.org/10.1016/j.est.2019.100797.

    Article  Google Scholar 

  55. Nóbrega CRES, Ismail KAR, Lino FAM. Enhancement of ice formation around vertical finned tubes for cold storage applications. Int J Refrig. 2019;99:251–63. https://doi.org/10.1016/j.ijrefrig.2018.12.018.

    Article  Google Scholar 

  56. Nóbrega CRES, Ismail KAR, Lino FAM. Solidification around axial finned tube submersed in PCM: modeling and experiments. J Energy Storage. 2020;29:101438. https://doi.org/10.1016/j.est.2020.101438.

    Article  Google Scholar 

  57. Zheng J, Wang J, Chen T, Yu Y. Solidification performance of heat exchanger with tree-shaped fins. Renew Energy. 2020;150:1098–107. https://doi.org/10.1016/j.renene.2019.10.091.

    Article  Google Scholar 

  58. Zhang Y, Yuan G, Wang Y, Gao P, Fan C, Wang Z. Solidification of an annular finned tube ice storage unit. Appl Therm Eng. 2022;212:118567. https://doi.org/10.1016/j.applthermaleng.2022.118567.

    Article  CAS  Google Scholar 

  59. Liu Z, Quan Z, Zhao Y, Jing H, Wang L, Liu X. Numerical research on the solidification heat transfer characteristics of ice thermal storage device based on a compact multichannel flat tube-closed rectangular fin heat exchanger. Energy. 2022;239:122381. https://doi.org/10.1016/j.energy.2021.122381.

    Article  Google Scholar 

  60. Nedjem K, Teggar M, Hadibi T, Arıcı M, Yıldız Ç, Ismail KAR. Hybrid thermal performance enhancement of shell and tube latent heat thermal energy storage using nano-additives and metal foam. J Energy Storage. 2021;44:103347. https://doi.org/10.1016/j.est.2021.103347.

    Article  Google Scholar 

  61. Xu HJ, Xing ZB, Wang FQ, Cheng ZM. Review on heat conduction, heat convection, thermal radiation and phase change heat transfer of nanofluids in porous media: fundamentals and applications. Chem Eng Sci. 2019;195:462–83. https://doi.org/10.1016/j.ces.2018.09.045.

    Article  CAS  Google Scholar 

  62. Wu CQ, Xu HJ, Zhao CY. A new fractal model on fluid flow/heat/mass transport in complex porous structures. Int J Heat Mass Transf. 2020;162:120292. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120292.

    Article  Google Scholar 

  63. Xu HJ. Thermal transport in microchannels partially filled with micro-porous media involving flow inertia, flow/thermal slips, thermal non-equilibrium and thermal asymmetry. Int Commun Heat Mass Transf. 2020;110:104404. https://doi.org/10.1016/j.icheatmasstransfer.2019.104404.

    Article  Google Scholar 

  64. Xu H. Convective heat transfer in a porous-medium micro-annulus with effects of the boundary slip and the heat-flux asymmetry: an exact solution. Int J Therm Sci. 2017;120:337–53. https://doi.org/10.1016/j.ijthermalsci.2017.06.021.

    Article  Google Scholar 

  65. Yang X, Feng S, Zhang Q, Chai Y, Jin L, Lu TJ. The role of porous metal foam on the unidirectional solidification of saturating fluid for cold storage. Appl Energy. 2017;194:508–21. https://doi.org/10.1016/j.apenergy.2016.09.050.

    Article  CAS  Google Scholar 

  66. Yang X, Bai Q, Zhang Q, Hu W, Jin L, Yan J. Thermal and economic analysis of charging and discharging characteristics of composite phase change materials for cold storage. Appl Energy. 2018;225:585–99. https://doi.org/10.1016/j.apenergy.2018.05.063.

    Article  Google Scholar 

  67. Al-Shannaq R, Young B, Farid M. Cold energy storage in a packed bed of novel graphite/PCM composite spheres. Energy. 2019;171:296–305. https://doi.org/10.1016/j.energy.2019.01.024.

    Article  CAS  Google Scholar 

  68. Caliano M, Bianco N, Graditi G, Mongibello L. Analysis of a phase change material-based unit and of an aluminum foam/phase change material composite-based unit for cold thermal energy storage by numerical simulation. Appl Energy. 2019;256:113921. https://doi.org/10.1016/j.apenergy.2019.113921.

    Article  CAS  Google Scholar 

  69. Fleming E, Wen S, Shi L, da Silva AK. Experimental and theoretical analysis of an aluminum foam enhanced phase change thermal storage unit. Int J Heat Mass Transf. 2015;82:273–81. https://doi.org/10.1016/j.ijheatmasstransfer.2014.11.022.

    Article  CAS  Google Scholar 

  70. Xu H, Wang Y, Han X. Analytical considerations of thermal storage and interface evolution of a PCM with/without porous media. Int J Numer Methods Heat Fluid Flow. 2020;30(1):373–400. https://doi.org/10.1108/HFF-02-2019-0094.

    Article  Google Scholar 

  71. Jourabian M, Farhadi M, Rabienataj DA. Constrained ice melting around one cylinder in horizontal cavity accelerated using three heat transfer enhancement techniques. Int J Therm Sci. 2018;125:231–47. https://doi.org/10.1016/j.ijthermalsci.2017.12.001.

    Article  CAS  Google Scholar 

  72. Bai Q, Guo Z, Li H, Yang X, Jin L, Yan J. Experimental investigation on the solidification behavior of phase change materials in open-cell metal foams. Energy Procedia. 2017;142:3703–8. https://doi.org/10.1016/j.egypro.2017.12.265.

    Article  Google Scholar 

  73. Jourabian M, Farhadi M, Rabienataj Darzi AA. Heat transfer enhancement of PCM melting in 2D horizontal elliptical tube using metallic porous matrix. Theor Comput Fluid Dyn. 2016;30(6):579–603. https://doi.org/10.1007/s00162-016-0402-0.

    Article  CAS  Google Scholar 

  74. Feng S, Zhang Y, Shi M, Wen T, Lu TJ. Unidirectional freezing of phase change materials saturated in open-cell metal foams. Appl Therm Eng. 2015;88:315–21. https://doi.org/10.1016/j.applthermaleng.2014.09.055.

    Article  Google Scholar 

  75. Zhang B, He Z. The preparation of AgI/Au/foam-Cu as a framework of composite for water-based cool storage phase-change material with low supercooling. Thermochim Acta. 2019;674:52–7. https://doi.org/10.1016/j.tca.2019.02.005.

    Article  CAS  Google Scholar 

  76. Venkateshwar K, Tasnim SH, Simha H, Mahmud S. Effect of spatially varying morphologies of metal foams on phase change process. Therm Sci Eng Prog. 2020;19:100667. https://doi.org/10.1016/j.tsep.2020.100667.

    Article  Google Scholar 

  77. Yang J, Yang L, Xu C, Du X. Numerical analysis on thermal behavior of solid–liquid phase change within copper foam with varying porosity. Int J Heat Mass Transf. 2015;84:1008–18. https://doi.org/10.1016/j.ijheatmasstransfer.2015.01.088.

    Article  CAS  Google Scholar 

  78. Wang Z, Wu J, Lei D, Liu H, Li J, Wu Z. Experimental study on latent thermal energy storage system with gradient porosity copper foam for mid-temperature solar energy application. Appl Energy. 2020;261:114472. https://doi.org/10.1016/j.apenergy.2019.114472.

    Article  CAS  Google Scholar 

  79. Xu Y, Ren Q, Zheng Z-J, He Y-L. Evaluation and optimization of melting performance for a latent heat thermal energy storage unit partially filled with porous media. Appl Energy. 2017;193:84–95. https://doi.org/10.1016/j.apenergy.2017.02.019.

    Article  CAS  Google Scholar 

  80. Joshi V, Rathod MK. Thermal performance augmentation of metal foam infused phase change material using a partial filling strategy: an evaluation for fill height ratio and porosity. Appl Energy. 2019;253:113621. https://doi.org/10.1016/j.apenergy.2019.113621.

    Article  Google Scholar 

  81. Zhao X, Jiaqiang E, Wu G, Deng Y, Han D, Zhang B, et al. A review of studies using graphenes in energy conversion, energy storage and heat transfer development. Energy Convers Manag. 2019;184:581–99. https://doi.org/10.1016/j.enconman.2019.01.092.

    Article  CAS  Google Scholar 

  82. Ismail KAR, Leitão ABV, Lino FAM, Henriquez JR. Parametric study of the solidification process between vertical parallel plates of a storage system. J Energy Resour Technol. 2021;143(7):070903. https://doi.org/10.1115/1.4050966.

    Article  CAS  Google Scholar 

  83. Lenic K, Trp A, Frankovic B. The possibility of an adaptive control of cooling defrosting cycle depending on frost conditions at the evaporator. Energy Environ. 2012;75–89.

  84. Carrilho DG, Silva PD, Pires LC, Gaspar PD, Nunes J. Quantification of the thermal resistance variation in evaporators surface due to ice formation. Energy Procedia. 2017;142:4151–6. https://doi.org/10.1016/j.egypro.2017.12.339.

    Article  Google Scholar 

  85. Chandrasekaran P, Cheralathan M, Kumaresan V, Velraj R. Enhanced heat transfer characteristics of water based copper oxide nanofluid PCM (phase change material) in a spherical capsule during solidification for energy efficient cool thermal storage system. Energy. 2014;72:636–42. https://doi.org/10.1016/j.energy.2014.05.089.

    Article  CAS  Google Scholar 

  86. Chandrasekaran P, Cheralathan M, Kumaresan V, Velraj R. Solidification behavior of water based nanofluid phase change material with a nucleating agent for cool thermal storage system. Int J Refrig. 2014;41:157–63. https://doi.org/10.1016/j.ijrefrig.2013.12.017.

    Article  CAS  Google Scholar 

  87. Altohamy AA, Abd Rabbo MF, Sakr RY, Attia AAA. Effect of water based Al2O3 nanoparticle PCM on cool storage performance. Appl Therm Eng. 2015;84:331–8. https://doi.org/10.1016/j.applthermaleng.2015.03.066.

    Article  CAS  Google Scholar 

  88. Sakr RY, Attia AAA, Altohamy AA, Elsemary IMM, Abd Rabbo MF. Heat transfer enhancement during freezing process of nano phase change material (NPCM) in a spherical capsule. Appl Therm Eng. 2017;125:1555–64. https://doi.org/10.1016/j.applthermaleng.2017.07.029.

    Article  CAS  Google Scholar 

  89. Feng Y, Li H, Li L, Bu L, Wang T. Numerical investigation on the melting of nanoparticle-enhanced phase change materials (NEPCM) in a bottom-heated rectangular cavity using lattice Boltzmann method. Int J Heat Mass Transf. 2015;81:415–25. https://doi.org/10.1016/j.ijheatmasstransfer.2014.10.048.

    Article  Google Scholar 

  90. Benbrika M, Teggar M, Arıcı M, Ismail KAR, Bouabdallah S, Mezaache E-H. Effect of graphene nanoparticles on charging and discharging processes of latent thermal energy storage using horizontal cylinders. Sustain Energy Technol Assess. 2021;45:101242. https://doi.org/10.1016/j.seta.2021.101242.

    Article  Google Scholar 

  91. Nedjem K, Teggar M, Ismail KAR, Nehari D. Numerical investigation of charging and discharging processes of a shell and tube nano-enhanced latent thermal storage unit. J Therm Sci Eng Appl. 2020;12(2):021021. https://doi.org/10.1115/1.4046062.

    Article  Google Scholar 

  92. Jourabian M, Farhadi M, Rabienataj Darzi AA. Outward melting of ice enhanced by Cu nanoparticles inside cylindrical horizontal annulus: Lattice Boltzmann approach. Appl Math Model. 2013;37(20):8813–25. https://doi.org/10.1016/j.apm.2013.04.003.

    Article  Google Scholar 

  93. Jourabian M, Farhadi M. RETRACTED ARTICLE: Melting of nanoparticles-enhanced phase change material (NEPCM) in vertical semicircle enclosure: numerical study. J Mech Sci Technol. 2015;29(9):3819–30. https://doi.org/10.1007/s12206-015-0828-0.

    Article  Google Scholar 

  94. Wang F, Zhang C, Liu J, Fang X, Zhang Z. Highly stable graphite nanoparticle-dispersed phase change emulsions with little supercooling and high thermal conductivity for cold energy storage. Appl Energy. 2017;188:97–106. https://doi.org/10.1016/j.apenergy.2016.11.122.

    Article  CAS  Google Scholar 

  95. Liu Y, Li X, Hu P, Hu G. Study on the supercooling degree and nucleation behavior of water-based graphene oxide nanofluids PCM. Int J Refrig. 2015;50:80–6. https://doi.org/10.1016/j.ijrefrig.2014.10.019.

    Article  CAS  Google Scholar 

  96. Sathishkumar A, Kumaresan V, Velraj R. Solidification characteristics of water based graphene nanofluid PCM in a spherical capsule for cool thermal energy storage applications. Int J Refrig. 2016;66:73–83. https://doi.org/10.1016/j.ijrefrig.2016.01.014.

    Article  CAS  Google Scholar 

  97. Yang X, Niu Z, Guo J, Bai Q, Li H, He Y-L. Role of pin fin-metal foam composite structure in improving solidification: performance evaluation. Int Commun Heat Mass Transf. 2020;117:104775. https://doi.org/10.1016/j.icheatmasstransfer.2020.104775.

    Article  Google Scholar 

  98. Yu C, Peng Q, Liu X, Cao P, Yao F. Role of metal foam on ice storage performance for a cold thermal energy storage (CTES) system. J Energy Storage. 2020;28:101201. https://doi.org/10.1016/j.est.2020.101201.

    Article  Google Scholar 

  99. Yang X, Niu Z, Bai Q, Li H, Cui X, He Y-L. Experimental study on the solidification process of fluid saturated in fin-foam composites for cold storage. Appl Therm Eng. 2019;161:114163. https://doi.org/10.1016/j.applthermaleng.2019.114163.

    Article  Google Scholar 

  100. Yang X, Wei P, Liu G, Bai Q, He Y-L. Performance evaluation on the gradient design of pore parameters for metal foam and pin fin-metal foam hybrid structure. Appl Therm Eng. 2020;175:115416. https://doi.org/10.1016/j.applthermaleng.2020.115416.

    Article  Google Scholar 

  101. Nóbrega CRES, Ismail KAR, Lino FAM. Thermal performance of bare and finned tubes submersed in nano-PCM mixture. J Braz Soc Mech Sci Eng. 2021;43(1):16. https://doi.org/10.1007/s40430-020-02740-5.

    Article  Google Scholar 

  102. Lohrasbi S, Sheikholeslami M, Ganji DD. Discharging process expedition of NEPCM in fin-assisted latent heat thermal energy storage system. J Mol Liq. 2016;221:833–41. https://doi.org/10.1016/j.molliq.2016.06.044.

    Article  CAS  Google Scholar 

  103. Hosseinzadeh K, Alizadeh M, Ganji DD. Solidification process of hybrid nano-enhanced phase change material in a LHTESS with tree-like branching fin in the presence of thermal radiation. J Mol Liq. 2019;275:909–25. https://doi.org/10.1016/j.molliq.2018.11.109.

    Article  CAS  Google Scholar 

  104. Sheikholeslami M, Haq R-U, Shafee A, Li Z, Elaraki YG, Tlili I. Heat transfer simulation of heat storage unit with nanoparticles and fins through a heat exchanger. Int J Heat Mass Transf. 2019;135:470–8. https://doi.org/10.1016/j.ijheatmasstransfer.2019.02.003.

    Article  CAS  Google Scholar 

  105. Laouer A, Teggar M, Tunçbilek E, Arıcı M, Hachani L, Ismail KAR. Melting of hybrid nano-enhanced phase change material in an inclined finned rectangular cavity for cold energy storage. J Energy Storage. 2022;50:104185. https://doi.org/10.1016/j.est.2022.104185.

    Article  Google Scholar 

  106. Alizadeh M, Pahlavanian MH, Tohidi M, Ganji DD. Solidification expedition of phase change material in a triplex-tube storage unit via novel fins and SWCNT nanoparticles. J Energy Storage. 2020;28:101188. https://doi.org/10.1016/j.est.2019.101188.

    Article  Google Scholar 

  107. Alizadeh M, Hosseinzadeh K, Shahavi MH, Ganji DD. Solidification acceleration in a triplex-tube latent heat thermal energy storage system using V-shaped fin and nano-enhanced phase change material. Appl Therm Eng. 2019;163:114436. https://doi.org/10.1016/j.applthermaleng.2019.114436.

    Article  Google Scholar 

  108. Alizadeh M, Hosseinzadeh K, Ganji DD. Investigating the effects of hybrid nanoparticles on solid–liquid phase change process in a Y-shaped fin-assisted LHTESS by means of FEM. J Mol Liq. 2019;287:110931. https://doi.org/10.1016/j.molliq.2019.110931.

    Article  CAS  Google Scholar 

  109. Hosseinzadeh K, Alizadeh M, Tavakoli MH, Ganji DD. Investigation of phase change material solidification process in a LHTESS in the presence of fins with variable thickness and hybrid nanoparticles. Appl Therm Eng. 2019;152:706–17. https://doi.org/10.1016/j.applthermaleng.2019.02.111.

    Article  CAS  Google Scholar 

  110. Hosseinzadeh K, Montazer E, Shafii MB, Ganji ARD. Solidification enhancement in triplex thermal energy storage system via triplets fins configuration and hybrid nanoparticles. J Energy Storage. 2021;34:102177. https://doi.org/10.1016/j.est.2020.102177.

    Article  Google Scholar 

  111. Sheikholeslami M, Lohrasbi S, Ganji DD. Response surface method optimization of innovative fin structure for expediting discharging process in latent heat thermal energy storage system containing nano-enhanced phase change material. J Taiwan Inst Chem Eng. 2016;67:115–25. https://doi.org/10.1016/j.jtice.2016.08.019.

    Article  CAS  Google Scholar 

  112. Lohrasbi S, Sheikholeslami M, Ganji DD. Multi-objective RSM optimization of fin assisted latent heat thermal energy storage system based on solidification process of phase change material in presence of copper nanoparticles. Appl Therm Eng. 2017;118:430–47. https://doi.org/10.1016/j.applthermaleng.2017.03.005.

    Article  CAS  Google Scholar 

  113. Babazadeh H, Sheremet MA, Mohammed HA, Hajizadeh MR, Li Z. Inclusion of nanoparticles in PCM for heat release unit. J Mol Liq. 2020;313:113544. https://doi.org/10.1016/j.molliq.2020.113544.

    Article  CAS  Google Scholar 

  114. Shafee A, Sheikholeslami M, Wang P, Selimefendigil F, Babazadeh H. Phase change process of nanoparticle enhanced PCM in a heat storage including unsteady conduction. J Mol Liq. 2020;309:113102. https://doi.org/10.1016/j.molliq.2020.113102.

    Article  CAS  Google Scholar 

  115. Arunachalam S. Latent heat storage: container geometry, enhancement techniques, and applications—a review. J Sol Energy Eng. 2019;141(5):050801. https://doi.org/10.1115/1.4043126.

    Article  CAS  Google Scholar 

  116. Van Hung T, Nam ND, Zaib A, Vuong BX. Nanomaterials for reduction of discharging time through a heat storage system. J Mol Liq. 2020;312:113396. https://doi.org/10.1016/j.molliq.2020.113396.

    Article  CAS  Google Scholar 

  117. Zhang X, Sheikholeslami M, Yan W-M, Shafee A, Selimefendigil F, Babazadeh H. Energy storage analysis for discharging of nanoparticle enhanced phase change material within a triplex-tube thermal storage. J Energy Storage. 2020;31:101640. https://doi.org/10.1016/j.est.2020.101640.

    Article  Google Scholar 

  118. Sheikholeslami M, Shehzad SA, Li Z, Shafee A, Abbasi FM. Time dependent conduction heat transfer during solidification in a storage system using nanoparticles. Microsyst Technol. 2019;25(6):2153–69. https://doi.org/10.1007/s00542-018-4050-8.

    Article  Google Scholar 

  119. Li Z, Sheikholeslami M, Ayani M, Shamlooei M, Shafee A, Waly MI, et al. Acceleration of solidification process by means of nanoparticles in an energy storage enclosure using numerical approach. Physica A. 2019;524:540–52. https://doi.org/10.1016/j.physa.2019.03.129.

    Article  Google Scholar 

  120. Sheikholeslami M. Numerical simulation for solidification in a LHTESS by means of nano-enhanced PCM. J Taiwan Inst Chem Eng. 2018;86:25–41. https://doi.org/10.1016/j.jtice.2018.03.013.

    Article  CAS  Google Scholar 

  121. Babazadeh H, Ramzan M, Nam ND, Hajizadeh MR. Modeling for solidification of water within a triplex-tube tank using nanoparticles. J Mol Liq. 2020;313:113532. https://doi.org/10.1016/j.molliq.2020.113532.

    Article  CAS  Google Scholar 

  122. Abdollahzadeh M, Esmaeilpour M. Enhancement of phase change material (PCM) based latent heat storage system with nano fluid and wavy surface. Int J Heat Mass Transf. 2015;80:376–85. https://doi.org/10.1016/j.ijheatmasstransfer.2014.09.007.

    Article  CAS  Google Scholar 

  123. Wang T, Almarashi A, Al-Turki YA, Abu-Hamdeh NH, Hajizadeh MR, Chu Y-M. Approaches for expedition of discharging of PCM involving nanoparticles and radial fins. J Mol Liq. 2021;329:115052. https://doi.org/10.1016/j.molliq.2020.115052.

    Article  CAS  Google Scholar 

  124. Hosseinzadeh K, Mogharrebi AR, Asadi A, Paikar M, Ganji DD. Effect of fin and hybrid nano-particles on solid process in hexagonal triplex latent heat thermal energy storage system. J Mol Liq. 2020;300:112347. https://doi.org/10.1016/j.molliq.2019.112347.

    Article  CAS  Google Scholar 

  125. Hosseinzadeh K, Moghaddam MAE, Asadi A, Mogharrebi AR, Ganji DD. Effect of internal fins along with hybrid nano-particles on solid process in star shape triplex latent heat thermal energy storage system by numerical simulation. Renew Energy. 2020;154:497–507. https://doi.org/10.1016/j.renene.2020.03.054.

    Article  CAS  Google Scholar 

  126. Alizadeh M, Hosseinzadeh K, Mehrzadi H, Ganji DD. Investigation of LHTESS filled by hybrid nano-enhanced PCM with Koch snowflake fractal cross section in the presence of thermal radiation. J Mol Liq. 2019;273:414–24. https://doi.org/10.1016/j.molliq.2018.10.049.

    Article  CAS  Google Scholar 

  127. Stritih U. An experimental study of enhanced heat transfer in rectangular PCM thermal storage. Int J Heat Mass Transf. 2004;47(12):2841–7. https://doi.org/10.1016/j.ijheatmasstransfer.2004.02.001.

    Article  CAS  Google Scholar 

  128. Alawadhi EMJC. Fluids. Phase change process with free convection in a circular enclosure: numerical simulations. Comput Fluids. 2004;33:1335–48.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Support is given by the Ministry of Higher Education and Scientific Research, DGRSDT (Algeria), for PRFU-a11n01un030120190003.

Author information

Authors and Affiliations

Authors

Contributions

MT: conceptualization, writing original draft, supervision, review and editing. AL: writing original draft. MA: review and editing. KARI: review.

Corresponding author

Correspondence to Mohamed Teggar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teggar, M., Laouer, A., Arıcı, M. et al. Heat transfer enhancement of ice storage systems: a systematic review of the literature. J Therm Anal Calorim 147, 11611–11632 (2022). https://doi.org/10.1007/s10973-022-11431-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11431-3

Keywords

Navigation