Skip to main content
Log in

RETRACTED ARTICLE: Melting of nanoparticles-enhanced phase change material (NEPCM) in vertical semicircle enclosure: numerical study

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

This article was retracted on 02 November 2021

This article has been updated

Abstract

Convection melting of ice as a Phase change material (PCM) dispersed with Cu nanoparticles, which is encapsulated in a semicircle enclosure is studied numerically. The enthalpy-based Lattice Boltzmann method (LBM) combined with a Double distribution function (DDF) model is used to solve the convection-diffusion equation. The increase in solid concentration of nanoparticles results in the enhancement of thermal conductivity of PCM and the decrease in the latent heat of fusion. By enhancing solid concentration of nanoparticles, the viscosity of nanofluid increases and convective heat transfer dwindles. For all Rayleigh numbers investigated in this study, the insertion of nanoparticles in PCM has no effect on the average Nusselt number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. J. M. Khodadadi and S. F. Hosseinizadeh, Nanoparticleenhanced phase change materials (NEPCM) with great potential for improved thermal energy storage, Int. Commun. Heat Mass Transfer, 34 (5) (2007) 534–543.

    Google Scholar 

  2. C. J. Ho and J. Y. Gao, Preparation and thermophysical properties of nanoparticle-in-paraffin emulsion as phase change material, Int. Commun. Heat Mass Transfer, 36 (5) (2009) 467–470.

    Google Scholar 

  3. S. Kuravi, K. M. Kota, J. Du and L. C. Chow, Numerical investigation of flow and heat transfer performance of nanoencapsulated phase change material slurry in microchannels, ASME J. Heat Transfer, 131 (6) (2009) 1–9.

    Google Scholar 

  4. L. Fan and J. M. Khodadadi, An experimental investigation of enhanced thermal conductivity and expedited unidirectional freezing of cyclohexane-based nanoparticle suspensions utilized as nano-enhanced phase change materials (NePCM), Int. J. Therm. Sci., 62 (2012) 120–126.

    Google Scholar 

  5. S. Jesumathy, M. Udayakumar and S. Suresh, Experimental study of enhanced heat transfer by addition of CuO nanoparticle, Heat Mass Transfer, 48 (6) (2012) 965–978.

    Google Scholar 

  6. S. Kashani, A. A. Ranjbar, M. Abdollahzadeh and S. Sebti, Solidification of nano-enhanced phase change material (NEPCM) in a wavy cavity, Heat Mass Transfer, 48 (7) (2012) 1155–1166.

    Google Scholar 

  7. S. F. Hosseinizadeh, A. A. R. Darzi and F. L. Tan, Numerical investigations of unconstrained melting of nanoenhanced phase change material (NEPCM) inside a spherical container, Int. J. Therm. Sci., 51 (2012) 77–83.

    Google Scholar 

  8. Z. Rao, S. Wang and F. Peng, Molecular dynamics simulations of nano-encapsulated and nanoparticle-enhanced thermal energy storage phase change materials, Int. J. Heat Mass Transfer, 66 (2013) 575–584.

    Google Scholar 

  9. Y. Zeng, L. W. Fan, Y. Q. Xiao, Z. T. Yu and K. F. Cen, An experimental investigation of melting of nanoparticleenhanced phase change materials (NePCMs) in a bottomheated vertical cylindrical cavity, Int. J. Heat Mass Transfer, 66 (2013) 111–117.

    Google Scholar 

  10. K. E. Omari, T. Kousksou and Y. L. Guer, Impact of shape of container on natural convection and melting inside enclosures used for passive cooling of electronic devices, Applied Therm. Eng., 31 (14–15) (2011) 3022–3035.

    Google Scholar 

  11. O. Bertrand, B. Binet, H. Combeau, S. Couturier, Y. Delannoy, D. Gobin, M. Lacroix, P. Le Quéré, M. Médale, J. Mencinger, H. Sadat and G. Vieira, Melting driven by natural convection. A comparison exercise: first results, Int. J. Therm. Sci., 38 (1) (1999) 5–26.

    Google Scholar 

  12. J. Mencinger, Numerical simulation of melting in twodimensional cavity using adaptative grid, J. Comput. Phys., 198 (1) (2004) 243–64.

    MATH  Google Scholar 

  13. L. Tan and N. Zabaras, A level set simulation of dendritic solidification with combined features of front-tracking and fixed-domain methods, J. Comput. Phys., 211 (1) (2006) 36–63.

    MathSciNet  MATH  Google Scholar 

  14. W. J. Boettinger, J. A. Warren, C. Beckermann and A. Karma, Phase-field simulation of solidification, Annu. Rev. Mater. Res., 32 (2002) 163–194.

    Google Scholar 

  15. A. R. Videla, C. L. Lin and J. D. Miller, Simulation of saturated fluid flow in packed particle beds—The lattice-Boltzmann method for the calculation of permeability from XMT images, J. Chinese Institute Chemical Engineers, 39 (2) (2008) 117–128.

    Google Scholar 

  16. D. Gao and Z. Chen, Lattice Boltzmann simulation of natural convection dominated melting in a rectangular cavity filled with porous media, Int. J. Therm. Sci., 50 (4) (2011) 493–501.

    Google Scholar 

  17. M. Jourabian, M. Farhadi and A. A. R. Darzi, Lattice Boltzmann investigation for enhancing the thermal conductivity of ice using Al2O3 porous matrix, Int. J. Comput. Fluid Dyn., 26 (9-10) (2012) 451–462.

    MathSciNet  Google Scholar 

  18. A. A. Mehrizi, M. Farhadi, K. Sedighi and M. A. Delavar, Effect of fin position and porosity on heat transfer improvement in a plate porous media heat exchanger, J. Taiwan Institute Chemical Eng., 44 (3) (2013) 420–431.

    Google Scholar 

  19. H. Nemati, M. Farhadi, K. Sedighi and A. A. R. Darzi, Lattice Boltzmann simulation of nanofluid in lid-driven cavity, Int. Commun. Heat Mass Transfer, 37 (10) (2010) 1528–1534.

    Google Scholar 

  20. W. S. Jiaung, J. R. Ho and C. P. Kuo, Lattice-Boltzmann method for the heat conduction problem with phase change, Numer. Heat Transfer: Part B, 39 (2) (2001) 167–187.

    Google Scholar 

  21. D. Chatterjee and S. Chakraborty, A hybrid lattice Boltzmann model for solid-liquid phase transition in presence of fluid flow, Phys. Lett. A, 351 (4–5) (2006) 359–367.

    MATH  Google Scholar 

  22. E. Semma, M. E. Ganaoui, R. Bennacer and A. A. Mohamad, Investigation of flows in solidification by using the lattice Boltzmann method, Int. J. Therm. Sci., 47 (3) (2008) 201–208.

    Google Scholar 

  23. C. Huber, A. Parmigiani, B. Chopard, M. Manga and O. Bachmann, Lattice Boltzmann model for melting with natural convection, Int. J. Heat Fluid Flow, 29 (5) (2008) 1469–1480.

    Google Scholar 

  24. E. Attar and C. Körner, Lattice Boltzmann model for thermal free surface flows with liquid-solid phase transition, Int. J. Heat Fluid Flow, 32 (1) (2011) 156–63.

    Google Scholar 

  25. M. Jourabian, M. Farhadi, K. Sedighi, A. A. Rabienataj Darzi and Y. Vazifeshenas, Simulation of natural convection melting in a cavity with fin using lattice Boltzmann method, Int. J. Numer. Meth. Fluids, 70 (3) (2012) 313–325.

    MathSciNet  MATH  Google Scholar 

  26. M. Jourabian, M. Farhadi and A. A. R. Darzi, Simulation of natural convection melting in an inclined cavity using lattice Boltzmann method, Sci. Iran., 19 (4) (2012) 1066–1073.

    MATH  Google Scholar 

  27. M. Jourabian, M. Farhadi, K. Sedighi, A. A. R. Darzi and Y. Vazifeshenas, Melting of NEPCM within a cylindrical tube: numerical study using the lattice Boltzmann method, Numer. Heat Transfer Part A, 61 (12) (2012) 929–948.

    MATH  Google Scholar 

  28. M. Eshraghi and S. D. Felicelli, An implicit lattice Boltzmann model for heat conduction with phase change, Int. J. Heat Mass Transfer, 55 (9–10) (2012) 2420–2428.

    Google Scholar 

  29. M. Jourabian, M. Farhadi and A. A. Rabienataj Darzi, Outward melting of ice enhanced by Cu nanoparticles inside cylindrical horizontal annulus: lattice Boltzmann approach, Appl. Math. Modelling, 37 (20–21) (2013) 8813–8825.

    MathSciNet  Google Scholar 

  30. M. Jourabian, M. Farhadi and A. A. Rabienataj Darzi, Convection-dominated melting of phase change material in partially heated cavity: lattice Boltzmann study, Heat Mass Transfer, 49 (4) (2013) 555–565.

    Google Scholar 

  31. R. Huang, H. Wu and P. Cheng, A new lattice Boltzmann model for solid-liquid phase change, Int. J. Heat Mass Transfer, 59 (2013) 295–301.

    Google Scholar 

  32. A. A. R. Darzi, M. Farhadi and M. Jourabian, Lattice Boltzmann simulation of heat transfer enhancement during melting by using nanoparticles, IJST Trans. Mech. Eng., 37 (1) (2013) 23–37.

    Google Scholar 

  33. M. Jourabian, M. Farhadi, A. A. R. Darzi and A. Abouei, Lattice Boltzmann simulation of melting phenomenon with natural convection from an eccentric annulus, Therm. Sci., 17 (3) (2013) 877–890.

    Google Scholar 

  34. J. M. Fuentes, F. Kuznik, K. Johannes and J. Virgone, Development and validation of a new LBM-MRT hybrid model with enthalpy formulation for melting with natural convection, Phys. Lett. A, 378 (4) (2014) 4374–4381.

    Google Scholar 

  35. A. A. R. Darzi, M. Farhadi, M. Jourabian and Y. Vazifeshenas, Natural convection melting of NEPCM in a cavity with an obstacle using lattice Boltzmann method, Int. J. Numer. Meth. Heat Fluid Flow, 24 (1) (2014) 221–236.

    MATH  Google Scholar 

  36. H. K. Kang, M. Tsutahara, K. D. Ro and Y. H. Lee, Numerical simulation of shock wave propagation using the finite difference lattice Boltzmann method, KSME Int. J., 16 (10) (2002) 1327–1335.

    Google Scholar 

  37. S. Alapati, S. Kang and Y. K. Suh, Parallel computation of two-phase flow in a microchannel using the lattice Boltzmann method, J. Mech. Sci. Tech., 23 (9) (2009) 2492–2501.

    Google Scholar 

  38. L. S. Kim, H. K. Jeong, M. Y. Ha and K. C. Kim, Numerical simulation of droplet formation in a micro-channel using the lattice Boltzmann method, J. Mech. Sci. Tech., 22 (4) (2008) 770–779.

    Google Scholar 

  39. H. Sajjadi, M. B. Abbassi and GH. R. Kefayati, Lattice Boltzmann simulation of turbulent natural convection in a square cavity using Cu/water nanofluid, J. Mech. Sci. Tech., 27 (8) (2013) 2341–2349.

    Google Scholar 

  40. R. Benzi, S. Succi and M. Vergassola, The lattice Boltzmann equation: Theory and applications, Phys. Reports, 222 (3) (1992) 145–197.

    Google Scholar 

  41. S. Chen and G. D. Doolen, Lattice Boltzmann method for fluid flows, Annual Rev. Fluid Mech., 30 (1998) 329–364.

    MathSciNet  MATH  Google Scholar 

  42. S. Succi, The Lattice Boltzmann equation for fluid dynamics and beyond, clarendon, New York, USA (2001).

    MATH  Google Scholar 

  43. H. E. Patel, T. Pradeep, T. Sundararajan, A. Dasgupta, N. Dasgupta and S. K. Das, A micro-convection model for thermal conductivity of nanofluid, Pramana-J. Phys., 65 (5) (2005) 863–869.

    Google Scholar 

  44. P. L. Bhatnagar, E. P. Gross and M. Krook, A model for collision processes in gases. I. small amplitude processes in charged and neutral one-component systems, Phys. Rev., 94 (1954) 511–525.

    MATH  Google Scholar 

  45. A. A. Mohamad, M. EL. Ganaoui and R. Bennacer, Lattice Boltzmann simulation of natural convection in an open ended cavity, Int. J. Therm. Sci., 48 (10) (2009) 1870–1875.

    Google Scholar 

  46. X. He, S. Chen and G. D. Doolen, A novel thermal model for the lattice Boltzmann method incompressible limit, J. Comput. Phys., 146 (1) (1998) 282–300.

    MathSciNet  MATH  Google Scholar 

  47. G. McNamara and B. Alder, Analysis of the lattice Boltzmann treatment of hydrodynamics, Phys. A, 194 (1–4) (1993) 218–228.

    MathSciNet  MATH  Google Scholar 

  48. N. Prasianakis and I. Karlin, Lattice Boltzmann method for thermal flow simulation on standard lattices, Phys. Rev. E, 76 (2007) 016702.

    Google Scholar 

  49. A. Mezrhab, M. Bouzidi and P. Lallemand, Hybrid lattice-Boltzmann finite difference simulation of convective flows, Comput. Fluids, 33 (4) (2004) 623–641.

    MATH  Google Scholar 

  50. Z. Guo, B. Shi and C. Zheng, A coupled lattice BGK model for the Boussinesq equations, Int. J. Numer. Meth. Fluids, 39 (4) (2002) 325–342.

    MathSciNet  MATH  Google Scholar 

  51. B. C. Shi and Z. L. Guo, Lattice Boltzmann model for nonlinear convection-diffusion equations, Phys. Rev. E, 79 (2009) 016701.

    Google Scholar 

  52. R. Das, S. C. Mishra and R. Uppaluri, Retrieval of thermal properties in a transient conduction-radiation problem with variable thermal conductivity, Int. J. Heat Mass Transfer, 52 (11–12) (2009) 2749–2758.

    MATH  Google Scholar 

  53. M. Wang, J. Wang, N. Pan and S. Chen, Mesoscopic predictions of the effective thermal conductivity for micro scale random porous media, Phys. Rev. E, 75 (2007) 1–10.

    Google Scholar 

  54. Y. Y. Yan and Y. Q. Zu, Numerical simulation of heat transfer and fluid flow past a rotating isothermal cylinder - A LBM approach, Int. J. Heat Mass Transfer, 51 (9–10) (2008) 2519–2536.

    MATH  Google Scholar 

  55. Z. L. Guo, C. Zheng and B. C. Shi, An extrapolation method for boundary conditions in lattice Boltzmann method, Phys. Fluids, 14 (6) (2002) 2007–2010.

    MATH  Google Scholar 

  56. D. Yu, R. Mei, L. S. Luo and W. Shyy, Viscous flow computations with the method of lattice Boltzmann equation, Prog. Aero. Sci., 39 (5) (2003) 329–367.

    Google Scholar 

  57. R. Mei, D. Yu and W. Shyy, Force evaluation in the lattice Boltzmann method involving curved geometry, Phys. Rev. E, 65 (2002) 1–14.

    Google Scholar 

  58. P. Jany and A. Bejan, Scaling theory of melting with natural convection in an enclosure, Int. J. Heat Mass Transfer, 31 (6) (1988) 1221–1235.

    Google Scholar 

  59. Y. Feng, H. Li, L. Li, L. Bu and T. Wang, Numerical investigation on the melting of nanoparticle-enhanced phase change materials (NEPCM) in a bottom-heated rectangular cavity using lattice Boltzmann method, Int. J. Heat Mass Transfer, 81 (2015) 415–425.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Jourabian.

Additional information

Recommended by Associate Editor Ji Hwan Jeong

Mahmoud Jourabian received his B.C. degree in the mechanical engineering from the University of Science and Technology in Iran. He got his Master degree in energy conversion from the Babol Noshirvani University of Technology in Iran. He is currently a Ph.D. researcher in an EU Marie Curie project called SEDITRANS, at the University of Trieste in Italy. His main research interests are large eddy simulation, sediment transport, porous media, CFD and PCM.

Mousa Farhadi received his Ph.D. at the Shahid Bahonar University of Kerman in 2005. He published more than 100 papers in the well-known journals in the field of CFD. He works now as an Associate Professor at the Babol Noshirvani University of Technology in Iran on the turbulence, heat transfer, lattice Boltzmann method and nanofluid.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jourabian, M., Farhadi, M. RETRACTED ARTICLE: Melting of nanoparticles-enhanced phase change material (NEPCM) in vertical semicircle enclosure: numerical study. J Mech Sci Technol 29, 3819–3830 (2015). https://doi.org/10.1007/s12206-015-0828-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-015-0828-0

Keywords

Navigation