Skip to main content
Log in

Tunable flammability studies of graphene quantum dots-based polystyrene nanocomposites using microscale combustion calorimeter

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Polymer composites with improved thermal and flame-retardant performance are imperative for fire-safe materials. Carbon-based nanomaterials have the advantages of low cytotoxicity, chemical inertness, cost-effectiveness, and biocompatibility. Graphene quantum dots (GQDs) as a new member of carbon-based nanomaterials were fabricated by pyrolysis method, and easy to be functionalized to fabricate nanocomposites as efficient flame retardant. Herein, polystyrene (PS) nanocomposites with introduction of modified graphene quantum dots (C-GQDs) were fabricated by the Pickering emulsion polymerization method. The C-GQDs with controllable chemical structure could be used as stabilizer in emulsion polymerization system and introduced to PS directly. Morphological and chemical characterization of PS nanocomposites revealed that the successful introduction of C-GQDs to PS, and C-GQDs were wrapped on the surface of PS microspheres. The flammability behavior of the PS nanocomposites was investigated by using microscale combustion calorimeters (MCC), and the peak heat release rate of PS nanocomposite was reduced 40% when compared with that of neat PS. The improved flame retardancy was mainly attributed to the C-GQDs promoting the formation of physical protective barrier on the surface, which impeded the permeation of heat and the pyrolysis products. Therefore, a facile method for preparing nanocomposite has been developed in this work, and C-GQDs could be used as flame retardants to reduce the flammability of polystyrene nanocomposites system.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang Y, Meng X, Wang C, Han Z, Shi H. Fire reaction properties of polystyrene-based composites using hollow silica as synergistic agent. J Therm Anal Calorim. 2020;8:1–8.

    Google Scholar 

  2. Chen X, Jiang Y, Jiao C. Smoke suppression properties of ferrite yellow on flame retardant thermoplastic polyurethane based on ammonium polyphosphate. J Hazard Mater. 2014;266:114–21.

    Article  CAS  PubMed  Google Scholar 

  3. Zhou K, Wang B, Jiang S, Yuan H, Song L, Hu Y. Facile preparation of nickel phosphide (Ni12P5) and synergistic effect with intumescent flame retardants in ethylene–vinyl acetate copolymer. Ind Eng Chem Res. 2013;52:6303–10.

    Article  CAS  Google Scholar 

  4. Chen X, Wei S, Gunesoglu C, Zhu J, Southworth CS, Sun L, Karki AB, Young DP, Guo Z. Electrospun magnetic fibrillar polystyrene nanocomposites reinforced with nickel nanoparticles. Macromol Chem Phys. 2010;211:1775–83.

    Article  CAS  Google Scholar 

  5. Brannum DJ, Price EJ, Villamil D, Kozawa S, Brannum M, Berry C, Semco R, Wnek GE. Flame-retardant polyurethane foams: one-pot, bioinspired silica nanoparticle coating. ACS Appl Polym Mater. 2019;1:2015–22.

    Article  CAS  Google Scholar 

  6. Wang Z, Liu Y, Li J. Regulating effects of nitrogenous bases on the char structure and flame retardancy of polypropylene/intumescent flame retardant composites. ACS Sustain Chem Eng. 2017;5:2375–83.

    Article  CAS  Google Scholar 

  7. Chen MJ, Lazar S, Kolibaba TJ, Shen R, Quan Y, Wang Q, Chiang H-C, Palen B, Grunlan JC. Environmentally benign and self-extinguishing multilayer nanocoating for protection of flammable foam. ACS Appl Mater Interfaces. 2020;12:49130–7.

    Article  CAS  PubMed  Google Scholar 

  8. Li Z, Liu L, Jiménez González A, Wang DY. Bioinspired polydopamine-induced assembly of ultrafine Fe(OH)3 nanoparticles on halloysite toward highly efficient fire retardancy of epoxy resin via an action of interfacial catalysis. Polym Chem. 2017;8:3926–36.

    Article  CAS  Google Scholar 

  9. Ahmed L, Zhang B, Shen R, Agnew RJ, Park H, Cheng Z, Mannan MS, Wang Q. Fire reaction properties of polystyrene-based nanocomposites using nanosilica and nanoclay as additives in cone calorimeter test. J Therm Anal Calorim. 2018;132:1853–65.

    Article  CAS  Google Scholar 

  10. Qin P, Yi D, Xing J, Zhou M, Hao J. Study on flame retardancy of ammonium polyphosphate/montmorillonite nanocompound coated cellulose paper and its application as surface flame retarded treatment for polypropylene. J Therm Anal Calorim. 2021;1:1–11.

    Google Scholar 

  11. Zhou K, Zhang Q, Liu J, Wang B, Jiang S, Shi Y, Hu Y, Gui Z. Synergetic effect of ferrocene and MoS2 in polystyrene composites with enhanced thermal stability, flame retardant and smoke suppression properties. RSC Adv. 2014;4:13205–14.

    Article  CAS  Google Scholar 

  12. Chen Y, Li J, Lai X, Li H, Zeng X. N-alkoxyamine-containing macromolecular intumescent flame-retardant-decorated zrp nanosheet and their synergism in flame-retarding polypropylene. Polym Adv. Technol. 2021; 1–13.

  13. Nyambo C, Songtipya P, Manias E, Jimenez-Gasco MM, Wilkie CA. Effect of MgAl-layered double hydroxide exchanged with linear alkyl carboxylates on fire-retardancy of PMMA and PS. J Mater Chem. 2008;18:4827–38.

    Article  CAS  Google Scholar 

  14. Huang SC, Deng C, Chen H, Li YM, Zhao ZY, Wang SX, Wang YZ. Novel ultrathin layered double hydroxide nanosheets with in situ formed oxidized phosphorus as anions for simultaneous fire resistance and mechanical enhancement of thermoplastic polyurethane. ACS Appl Polym Mater. 2019;1:1979–90.

    Article  CAS  Google Scholar 

  15. Ning H, Ma Z, Zhang Z, Zhang D, Wang Y. Core-shell expandable graphite @ layered double hydroxide as a flame retardant for polyvinyl alcohol. J Therm Anal Calorim. 2021;7:1–10.

    Google Scholar 

  16. Attia NF, Saleh BK. Novel synthesis of renewable and green flame-retardant, antibacterial and reinforcement material for styrene–butadiene rubber nanocomposites. J Therm Anal Calorim. 2020;139:1817–27.

    Article  CAS  Google Scholar 

  17. Wang X, Kalali EN, Wan JT, Wang DY. Carbon-family materials for flame retardant polymeric materials. Prog Polym Sci. 2017;69:22–46.

    Article  CAS  Google Scholar 

  18. Attia NF, Sally EA, Elashery AM, Abdelazeem SE, Hyunchul O. Recent advances in graphene sheets as new generation of flame retardant materials. Mater Sci Eng B. 2021;274:115460.

    Article  CAS  Google Scholar 

  19. Attia N F. Sustainable and efficient flame retardant materials for achieving high fire safety for polystyrene composites. J Therm Anal Calorim. 2021: 1–10.

  20. Han Y, Wu Y, Shen M, Huang X, Zhu J, Zhang X. Preparation and properties of polystyrene nanocomposites with graphite oxide and graphene as flame retardants. J Mater Sci. 2013;48:4214–22.

    Article  CAS  Google Scholar 

  21. Attia NF, Abd El-Aal NS, Hassan MA. Facile synthesis of graphene sheets decorated nanoparticles and flammability of their polymer nanocomposites. Polym Degrad Stab. 2016;126:65–74.

    Article  CAS  Google Scholar 

  22. Xing W, Yang W, Yang W, Hu Q, Si J, Lu H, Yang B, Song L, Hu Y, Yuen RKK. Functionalized carbon nanotubes with phosphorus- and nitrogen-containing agents: effective reinforcer for thermal, mechanical, and flame-retardant properties of polystyrene nanocomposites. ACS Appl Mater Interfaces. 2016;8:26266–74.

    Article  CAS  PubMed  Google Scholar 

  23. Khose RV, Pethsangave DA, Wadekar PH, Ray AK, Some S. Novel approach towards the synthesis of carbon-based transparent highly effective flame retardant. Carbon. 2018;139:205–9.

    Article  CAS  Google Scholar 

  24. Rahimi-Aghdam T, Shariatinia Z, Hakkarainen M, Haddadi-Asl V. Nitrogen and phosphorous doped graphene quantum dots: excellent flame retardants and smoke suppressants for polyacrylonitrile nanocomposites. J Hazard Mater. 2020;381:121013.

    Article  CAS  PubMed  Google Scholar 

  25. Ma R, Zeng M, Huang D, Wang J, Cheng Z, Wang Q. Amphiphilicity-adaptable graphene quantum dots to stabilize ph-responsive pickering emulsions at a very low concentration. J Colloid Interface Sci. 2021;601:106–13.

    Article  CAS  PubMed  Google Scholar 

  26. Yin G, Zheng Z, Wang H, Du Q, Zhang H. Preparation of graphene oxide coated polystyrene microspheres by pickering emulsion polymerization. J Colloid Interface Sci. 2013;394:192–8.

    Article  CAS  PubMed  Google Scholar 

  27. Liu Y, Zhang Y, Duan L, Zhang W, Su M, Sun Z, He P. Polystyrene/graphene oxide nanocomposites synthesized via pickering polymerization. Prog Org Coat. 2016;99:23–31.

    Article  CAS  Google Scholar 

  28. Xu Q, Mensah RA, Jin C, Jiang L. A critical review of the methods and applications of microscale combustion calorimetry for material flammability assessment. J Therm Anal Calorim. 2021;7:1–13.

    CAS  Google Scholar 

  29. Jung R, Park WI, Kwon SM, Kim HS, Jin HJ. Location-selective incorporation of multiwalled carbon nanotubes in polycarbonate microspheres. Polymer. 2008;49:2071–6.

    Article  CAS  Google Scholar 

  30. Maity N, Kuila A, Das S, Mandal D, Shit A, Nandi AK. Optoelectronic and photovoltaic properties of graphene quantum dot–polyaniline nanostructures. J Mater Chem A. 2015;3:20736–48.

    Article  CAS  Google Scholar 

  31. Shi Y, Liu C, Liu L, Fu L, Yu B, Lv Y, Yang F, Song P. Strengthening, toughing and thermally stable ultra-thin MXene nanosheets/polypropylene nanocomposites via nanoconfinement. Chem Eng J. 2019;378:122267.

    Article  Google Scholar 

  32. Lu H, Wilkie CA. Fire performance of flame retardant polypropylene and polystyrene composites screened with microscale combustion calorimetry. Polym Adv Technol. 2011;22:14–21.

    Article  CAS  Google Scholar 

  33. Lu H, Wilkie CA, Ding M, Song L. Flammability performance of poly(vinyl alcohol) nanocomposites with zirconium phosphate and layered silicates. Polym Degrad Stab. 2011;96:1219–24.

    Article  CAS  Google Scholar 

  34. Xu Q, Jin C, Majlingova A, Restas A. Discuss the heat release capacity of polymer derived from microscale combustion calorimeter. J Therm Anal Calorim. 2018;133:649–57.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the use of the Materials Characterization Facility (MCF) at Texas A&M University for SEM. The authors also thank Dr. Hung-Jue Sue for using TGA instrument.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingsheng Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 113 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, R., Shen, R., Quan, Y. et al. Tunable flammability studies of graphene quantum dots-based polystyrene nanocomposites using microscale combustion calorimeter. J Therm Anal Calorim 147, 10383–10390 (2022). https://doi.org/10.1007/s10973-022-11277-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11277-9

Keywords

Navigation