Skip to main content
Log in

Influence of nanoparticle geometry on the thermal stability and flame retardancy of high-impact polystyrene nanocomposites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Nanocomposites of high-impact polystyrene (HIPS) with three types of nanoparticles, namely layered organically modified montmorillonite (OMMT), tubular multi-walled carbon nanotubes (MWNTs) and spherical silica nanoparticles, were prepared by melt blending method. The influence of nanoparticle geometry on the thermal stability and flame retardancy of HIPS nanocomposites was investigated by transmission electron microscopy, thermo-gravimetric analysis, cone calorimeter method and scanning electron microscopy. The results show that the presence of three types of nanoparticles with varying geometries does not change the degradation mechanism of the nanocomposites, but greatly decreases the heat release rate and mass loss rate of the materials due to the fire residue formed in the condensed phase. The layered structure of OMMT exhibits the best flame-retarded effect, and the tubular structure of MWNT obtains a weaker flame-retarded effect and the spherical structure of silica nanoparticles the weakest. The effectiveness of flammability reduction is varied with nanoparticle geometries due to the discrepancies in featured structures of fire residues formed in real fire conditions. The idealized models of the featured structures of fire residues from the nanocomposites studied are put forward to explain the flame-retardant mechanism of the nanoparticles with different geometries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Laoutid F, Bonnaud LIL, Alexandre MEL, Lopez-Cuesta J, Dubois P. New prospects in flame retardant polymer materials: from fundamentals to nanocomposites. Mat Sci Eng R. 2009;63:100–25.

    Article  Google Scholar 

  2. Zhang J, Zhang H. Study on the flammability of HIPS-montmorillonite nanocomposites prepared by static melt intercalation. J Fire Sci. 2005;23:193–208.

    Article  CAS  Google Scholar 

  3. Wang P, Yang F, Cai Z. Synergistic effect of organo-montmorillonite and DOPO-based oligomer on improving the flame retardancy of epoxy thermoset. J Therm Anal Calorim. 2017;128:1429–41.

    Article  CAS  Google Scholar 

  4. Rybiński P, Anyszka R, Imiela M, Siciński M, Gozdek T. Effect of modified graphene and carbon nanotubes on the thermal properties and flammability of elastomeric materials. J Therm Anal Calorim. 2017;127:2383–96.

    Article  Google Scholar 

  5. Shen R, Hatanaka LC, Ahmed L, Agnew RJ, Mannan MS, Wang Q. Cone calorimeter analysis of flame retardant poly(methyl methacrylate)-silica nanocomposites. J Therm Anal Calorim. 2017;128:1443–51.

    Article  CAS  Google Scholar 

  6. Costache MC, Heidecker MJ, Manias E, Camino G, Frache A, Beyer G, Gupta RK, Wilkie CA. The influence of carbon nanotubes, organically modified montmorillonites and layered double hydroxides on the thermal degradation and fire retardancy of polyethylene, ethylene–vinyl acetate copolymer and polystyrene. Polymer. 2007;48:6532–45.

    Article  CAS  Google Scholar 

  7. Isitman NA, Dogan M, Bayramli E, Kaynak C. The role of nanoparticle geometry in flame retardancy of polylactide nanocomposites containing aluminium phosphinate. Polym Degrad Stab. 2012;97:1285–96.

    Article  CAS  Google Scholar 

  8. Dittrich B, Wartig K, Hofmann D, Mülhaupt R, Schartel B. The influence of layered, spherical, and tubular carbon nanomaterials’ concentration on the flame retardancy of polypropylene. Polym Compos. 2015;36:1230–41.

    Article  CAS  Google Scholar 

  9. Cao L, Deng S, He Z, Lin Z, Li M, Zhang P, Li W. Effects of carbon nanotube on mechanical, crystallization, and electrical properties of binary blends of poly(phenylene sulfide) and polyphthalamide. J Therm Anal Calorim. 2016;125:927–34.

    Article  CAS  Google Scholar 

  10. Yan L, Xu Z, Zhang J. Flame retardant and smoke suppression mechanism of multi-walled carbon nanotubes on high-impact polystyrene nanocomposites. Iran Polym J. 2016;25:623–33.

    Article  CAS  Google Scholar 

  11. Dittrich B, Wartig K, Hofmann D, Mülhaupt R, Schartel B. Carbon black, multiwall carbon nanotubes, expanded graphite and functionalized graphene flame retarded polypropylene nanocomposites. Polym Adv Technol. 2013;24:916–26.

    Article  CAS  Google Scholar 

  12. Sun J, Gu X, Zhang S, Coquelle M, Bourbigot S, Duquesne S, Casetta M. Improving the flame retardancy of polyamide 6 by incorporating hexachlorocyclotriphosphazene modified MWNT. Polym Adv Technol. 2014;25:1099–107.

    Article  CAS  Google Scholar 

  13. Kashiwagi T, Du F, Douglas JF, Winey KI. Nanoparticle networks reduce the flammability of polymer nanocomposites. Nat Mater. 2005;4:928–33.

    Article  CAS  Google Scholar 

  14. Schartel B, Pötschke P, Knoll U, Abdel-Goad M. Fire behaviour of polyamide 6/multiwall carbon nanotube nanocomposites. Eur Polym J. 2005;41:1061–70.

    Article  CAS  Google Scholar 

  15. Liu J, Zhou K, Wen P, Wang B, Hu Y, Gui Z. The influence of multiple modified MMT on the thermal and fire behavior of poly(lactic acid) nanocomposites. Polym Adv Technol. 2015;26:626–34.

    Article  CAS  Google Scholar 

  16. Rapacz-Kmita A, Gajek M, Dudek M, Stodolak-Zych E, Szaraniec B, Lach R. Thermal, structural and mechanical analysis of polymer/clay nanocomposites with controlled degradation. J Therm Anal Calorim. 2017;127:389–98.

    Article  CAS  Google Scholar 

  17. Kiliaris P, Papaspyrides CD. Polymer/layered silicate (clay) nanocomposites: an overview of flame retardancy. Prog Polym Sci. 2010;35:902–58.

    Article  CAS  Google Scholar 

  18. Schartel B, Bartholmai M, Knoll U. Some comments on the main fire retardancy mechanisms in polymer nanocomposites. Polym Adv Technol. 2006;17:772–7.

    Article  CAS  Google Scholar 

  19. Wu GM, Schartel B, Bahr H, Kleemeier M, Yu D, Hartwig A. Experimental and quantitative assessment of flame retardancy by the shielding effect in layered silicate epoxy nanocomposites. Combust Flame. 2012;159:3616–23.

    Article  CAS  Google Scholar 

  20. Zhang J, Bai M, Wang Y, Xiao F. Featured structures of fire residue of high-impact polystyrene/organically modified montmorillonite nanocomposites during burning. Fire Mater. 2012;36:661–70.

    Article  CAS  Google Scholar 

  21. Salehi Vaziri H, Abadyan M, Nouri M, Omaraei IA, Sadredini Z, Ebrahimnia M. Investigation of the fracture mechanism and mechanical properties of polystyrene/silica nanocomposite in various silica contents. J Mater Sci. 2011;46:5628–38.

    Article  CAS  Google Scholar 

  22. Lv H, Song S, Sun S, Ren L, Zhang H. Enhanced properties of poly(lactic acid) with silica nanoparticles. Polym Adv Technol. 2016;27:1156–63.

    Article  CAS  Google Scholar 

  23. Yang F, Nelson GL. Polymer/silica nanocomposites prepared via extrusion. Polym Adv Technol. 2006;17:320–6.

    Article  CAS  Google Scholar 

  24. Kashiwagi T, Morgan AB, Antonucci JM, VanLandingham MR, Harris RH, Awad WH, Shields JR. Thermal and flammability properties of a silica–poly(methylmethacrylate) nanocomposite. J Appl Polym Sci. 2003;89:2072–8.

    Article  CAS  Google Scholar 

  25. Courtat J, Melis F, Taulemesse J, Bounor-Legare V, Sonnier R, Ferry L, Cassagnau P. Effect of phosphorous-modified silica on the flame retardancy of polypropylene based nanocomposites. Polym Degrad Stab. 2015;119:260–74.

    Article  CAS  Google Scholar 

  26. Dittrich B, Wartig K, Hofmann D, Mülhaupt R, Schartel B. Flame retardancy through carbon nanomaterials: carbon black, multiwall nanotubes, expanded graphite, multi-layer graphene and graphene in polypropylene. Polym Degrad Stab. 2013;98:1495–505.

    Article  CAS  Google Scholar 

  27. Li K, Hostikka S, Dai P, Li Y, Zhang H, Ji J. Charring shrinkage and cracking of fir during pyrolysis in an inert atmosphere and at different ambient pressures. Proc Combust Inst. 2017;36:3185–94.

    Article  Google Scholar 

  28. Ren X, Zong R, Hu Y, Lo S, Stec AA, Hull TR. Investigation of thermal decomposition of polymer nanocomposites with different char residues. Polym Adv Technol. 2015;26:1027–33.

    Article  CAS  Google Scholar 

  29. Wang Y, Zhang L, Yang Y, Cai X. Synergistic flame retardant effects and mechanisms of aluminum diethylphosphinate (AlPi) in combination with aluminum trihydrate (ATH) in UPR. J Therm Anal Calorim. 2016;125:839–48.

    Article  CAS  Google Scholar 

  30. Makhlouf G, Hassan M, Nour M, Abdel-Monem YK, Abdelkhalik A. Evaluation of fire performance of linear low-density polyethylene containing novel intumescent flame retardant. J Therm Anal Calorim. 2017;. doi:10.1007/s10973-017-6418-x.

    Google Scholar 

  31. Schartel B, Weiß A. Temperature inside burning polymer specimens: pyrolysis zone and shielding. Fire Mater. 2009;34:217–35.

    Google Scholar 

Download references

Acknowledgements

This project was supported by the National Natural Science Foundation of China (No. 51676210), the Postdoctoral Science Foundation of Central South University (No. 175828) and the Project funded by China Postdoctoral Science Foundation (No. 2017M612587).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, L., Xu, Z. & Zhang, J. Influence of nanoparticle geometry on the thermal stability and flame retardancy of high-impact polystyrene nanocomposites. J Therm Anal Calorim 130, 1987–1996 (2017). https://doi.org/10.1007/s10973-017-6514-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6514-y

Keywords

Navigation