Skip to main content
Log in

Complex thermal kinetic study of calcium phosphate biomaterial CaHPO4 using the asymmetric deconvolution approach

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The complex dehydroxylation kinetics of calcium phosphate biomaterial CaHPO4 was investigated using non-isothermal thermogravimetry/differential thermal analysis and multi-peak fitting method, under air flow at different heating rates. The overlapped kinetic curves were separated into two independent steps by the asymmetric Fraser-Suzuki function and the thermal characteristics with kinetic parameters were determined. For each step, the activation energy was evaluated using model-free isoconversional methods of differential Friedman (Fr) and, integral Ozawa-Flynn-Wall and Kissinger-Akahira-Sunose (KAS). The Eα calculations showed close values for integral methods by comparison with results of the differential Fr. The best fit of experimental kinetic curves was achieved by considering the KAS activation energy and Johnson-Mehl-Avrami (JMA(n)) as the adequate function model with a nucleation-growth mechanism. Both dehydroxylation steps of biomaterial were attributed to the microstructure heterogeneity including two kinds of particle size and shape as was confirmed by dynamic light scattering analysis and SEM microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Dorozhkin SV. Multiphasic calcium orthophosphate (CaPO4) bioceramics and their biomedical applications. Ceram Int. 2016;42(6):6529–54.

    Article  CAS  Google Scholar 

  2. Dorozhkin SV. Nanodimensional and nanocrystalline apatites and other calcium orthophosphates in biomedical engineering, biology and medicine. Materials. 2009;2(4):1975–2045.

    Article  CAS  PubMed Central  Google Scholar 

  3. Feng P, Peng S, Shuai C, Gao C, Yang W, Bin S, Min A. In situ generation of hydroxyapatite on biopolymer particles for fabrication of bone scaffolds owning bioactivity. ACS Appl Mater Interfaces. 2020;12(41):46743–55.

    Article  CAS  PubMed  Google Scholar 

  4. Da Silva MP, Lima JHC, Soares GA, Elias CN, De Andrade MC, Best SM, Gibson IR. Transformation of monetite to hydroxyapatite in bioactive coatings on titanium. Surf Coat Tech. 2001;137(2–3):270–6.

    Article  Google Scholar 

  5. Sheikh Z, Zhang YL, Tamimi F, Barralet J. Effect of processing conditions of dicalcium phosphate cements on graft resorption and bone formation. Acta Biomater. 2017;53:526–35.

    Article  CAS  PubMed  Google Scholar 

  6. Tamimi F, Le Nihouannen D, Eimar H, Sheikh Z, Komarova S, Barralet J. The effect of autoclaving on the physical and biological properties of dicalcium phosphate dihydrate bioceramics: Brushite vs. monetite. Acta Biomater. 2012;8(8):3161–9.

    Article  CAS  PubMed  Google Scholar 

  7. Tamimi F, Torres J, Kathan C, Baca R, Clemente C, Blanco L, Cabarcos EL. Bone regeneration in rabbit calvaria with novel monetite granules. J Biomed Mater Res A. 2008;87(4):980–5.

    Article  PubMed  CAS  Google Scholar 

  8. Medvecky L, Stulajterova R, Giretova M, Mincik J, Vojtko M, Balko J, Briancin J. Effect of tetracalcium phosphate/monetite toothpaste on dentin remineralization and tubule occlusion in vitro. Dent Mater. 2008;34(3):442–51.

    Article  CAS  Google Scholar 

  9. Mulongo-Masamba R, El Hazzat M, El Hamidi A, Halim M, Arsalane S. New functional β-chitin/calcium phosphate as promising support of copper nanocatalyst for the reductive degradation of methylene blue. Int J Environ Sci Technol. 2019;16(12):8117–28.

    Article  CAS  Google Scholar 

  10. Mulongo-Masamba R, El Hamidi A, Bouyahya A, Halim M, Arsalane S. A novel hybrid β-chitin/calcium phosphate functionalized with copper nanoparticles for antibacterial applications. J Environ Chem Eng. 2018;6(5):6399–406.

    Article  CAS  Google Scholar 

  11. Chen S, Grandfield K, Yu S, Engqvist H, Xia W. Synthesis of calcium phosphate crystals with thin nacreous structure. CrystEngComm. 2016;18(6):1064–9.

    Article  CAS  Google Scholar 

  12. Lebre F, Sridharan R, Sawkins MJ, Kelly DJ, O’Brien FJ, Lavelle EC. The shape and size of hydroxyapatite particles dictate inflammatory responses following implantation. Sci Rep. 2017;7(1):1–13.

    Article  CAS  Google Scholar 

  13. Jinawath S, Pongkao D, Suchanek W, Yoshimura M. Hydrothermal synthesis of monetite and hydroxyapatite from monocalcium phosphate monohydrate. Int J Inorg Mater. 2001;3(7):997–1001.

    Article  CAS  Google Scholar 

  14. Sivakumar GR, Girija EK, Narayana Kalkura S, Subramanian C. Crystallization and characterization of calcium phosphates: brushite and monetite. Cryst Res Technol. 1998;33(2):197–205.

    Article  CAS  Google Scholar 

  15. Kong XD, Sun XD, Lu JB, Cui FZ. Mineralization of calcium phosphate in reverse microemulsion. Curr Appl Phys. 2005;5(5):519–21.

    Article  Google Scholar 

  16. Ma MG, Zhu YJ, Chang J. Monetite formed in mixed solvents of water and ethylene glycol and its transformation to hydroxyapatite. J Phys Chem B. 2006;110(29):14226–30.

    Article  CAS  PubMed  Google Scholar 

  17. Mulley VJ, Cavendish CD. A thermogravimetric method for the analysis of mixtures of brushite and monetite. Analyst. 1970;95(1128):304–7.

    Article  CAS  Google Scholar 

  18. El Hazzat M, El Hamidi A, Halim M, Arsalane S. Complex evolution of phase during the thermal investigation of Brushite-type calcium phosphate CaHPO4 2H2O. Materialia. 2021;16:101055.

    Article  CAS  Google Scholar 

  19. Wikholm NW, Beebe RA, Kittelberger JS. Kinetics of the conversion of monetite to calcium pyrophosphate. J Phys Chem. 1975;79(8):853–6.

    Article  CAS  Google Scholar 

  20. Mulongo-Masamba R, El Kassri T, Khachani M, Arsalane S, Halim M, El Hamidi A. Synthesis and thermal dehydroxylation kinetic of anhydrous calcium phosphate monetite CaHPO4. J Therm Anal Calorim. 2015;124(1):171–80.

    Article  CAS  Google Scholar 

  21. Vargas RA, Mosquera M. Phase transitions in CaHPO4 and BaHPO4 above room temperature. Rev Mex Fis. 1992;39(3):450–5.

    Google Scholar 

  22. Louati B, Hlel F, Guidara K, Gargouri M. Analysis of the effects of thermal treatments on CaHPO4 by 31P NMR spectroscopy. J Alloys Compd. 2005;394(1–2):13–8.

    Article  CAS  Google Scholar 

  23. Djošić MS, Mišković-Stanković VB, Kačarević-Popović ZM, Jokić BM, Bibić N, Mitrić M, Stojanović J. Electrochemical synthesis of nanosized monetite powder and its electrophoretic deposition on titanium. Colloids Surf A Physicochem Eng Asp. 2009;341(1–3):110–7.

    Article  CAS  Google Scholar 

  24. Vyazovkin S, Burnham AK, Favergeon L, Koga N, Moukhina E, Pérez-Maqueda LA, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for analysis of multi-step kinetics. Thermochim Acta. 2020;689:178597.

    Article  CAS  Google Scholar 

  25. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520(1–2):1–19.

    Article  CAS  Google Scholar 

  26. Perejón A, Sánchez-Jiménez PE, Criado JM, Pérez-Maqueda LA. Kinetic analysis of complex solid-state reactions. A new deconvolution procedure. J Phys Chem B. 2011;115(8):1780–91.

    Article  PubMed  CAS  Google Scholar 

  27. Svoboda R, Málek J. Applicability of Fraser-Suzuki function in kinetic analysis of complex crystallization processes. J Therm Anal Calorim. 2013;111(2):1045–56.

    Article  CAS  Google Scholar 

  28. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci Part C Poly Symp. 1964;6(1):183–95.

    Article  Google Scholar 

  29. Arshad MA, Maaroufi A, Benavente R, Pinto G. Thermal degradation mechanisms of epoxy composites filled with tin particles. Polym Compos. 2017;38(8):1529–40.

    Article  CAS  Google Scholar 

  30. Flynn JH. The ‘temperature integral’-its use and abuse. Thermochim Acta. 1997;300(1–2):83–92.

    Article  CAS  Google Scholar 

  31. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29(11):1702–6.

    Article  CAS  Google Scholar 

  32. Akahira T, Sunose T. Method of determining activation deterioration constant of electrical insulating materials. Res Rep Chiba Inst Technol. 1971;16:22–31.

    Google Scholar 

  33. Doyle CD. Estimating isothermal life from thermogravimetric data. J Appl Polym Sci. 1962;6(24):639–42.

    Article  CAS  Google Scholar 

  34. Perez-Maqueda LA, Criado JM, Sanchez-Jimenez PE. Combined kinetic analysis of solid-state reactions: a powerful tool for the simultaneous determination of kinetic parameters and the kinetic model without previous assumptions on the reaction mechanism. J Phys Chem A. 2006;110(45):12456–62.

    Article  CAS  PubMed  Google Scholar 

  35. Iwasaki S, Kodani S, Koga N. Physico-Geometrical kinetic modeling of the thermal decomposition of magnesium hydroxide. J Phys Chem C. 2020;124(4):2458–71.

    Article  CAS  Google Scholar 

  36. Koga N. Physico-geometric approach to the kinetics of overlapping solid-state reactions. In: Handbook of thermal analysis and calorimetry. Elsevier Science BV, 2018. 6:213–51.

  37. Málek J, Criado JM. Is the Šesták-Berggren equation a general expression of kinetic models? Thermochim Acta. 1991;175(2):305–9.

    Article  Google Scholar 

  38. Mhla E, Koutsoukos PG. Heterogeneous crystallization of calcium hydrogen phosphate anhydrous (monetite). Colloids Surf A Physicochem Eng Asp. 2017;513:125–35.

    Article  CAS  Google Scholar 

  39. Mulongo-Masamba R, El Hamidi A, Khachani M, Halim M, Arsalane S. Synthesis and characterization of new β-chitin/calcium phosphate (DCPA) based composite using natural resources for environmental application. Colloids Surf A Physicochem Eng Asp. 2017;520:686–93.

    Article  CAS  Google Scholar 

  40. Catti M, Ferraris G. Hydrogen bonding in the crystalline state. CaHPO4 (monetite), P \(\overline{1}\) or P1? A novel neutron diffraction study. Acta Crystallogr B. 1977;33(4):1223-9.

  41. Tortet L, Gavarri JR, Nihoul G, Dianoux AJ. Study of protonic mobility in CaHPO4·2H2O (brushite) and CaHPO4 (monetite) by infrared spectroscopy and neutron scattering. J Solid State Chem. 1997;132(1):6–16.

    Article  CAS  Google Scholar 

  42. Cornilsen BC, Condrate RA Sr. The vibratonal spectra of β-Ca2P2O7 and γ-Ca2P2O7. J Inorg Nucl Chem. 1979;41(4):602–5.

    Article  CAS  Google Scholar 

  43. Svoboda R, Málek J. Extended study of crystallization kinetics for Se-Te glasses. J Therm Anal Calorim. 2013;111(1):161–71.

    Article  CAS  Google Scholar 

  44. Svoboda R, Málek J. Thermal behavior in Se-Te chalcogenide system: Interplay of thermodynamics and kinetics. J Chem Phys. 2014;141(22):224507.

    Article  PubMed  CAS  Google Scholar 

  45. Svoboda R. Kinetic analysis of particle-size based complex kinetic processes. J Non Cryst Solids. 2020;533:119903.

    Article  CAS  Google Scholar 

  46. Arcenegui-Troya J, Sánchez-Jiménez PE, Perejón A, Pérez-Maqueda LA. Relevance of particle size distribution to kinetic analysis: The case of thermal dehydroxylation of Kaolinite. Processes. 2021;9(10):1852.

    Article  CAS  Google Scholar 

  47. Cui Z, Xue Y, Xiao L, Wang T. Effect of particle size on activation energy for thermal decomposition of Nano-CaCO3. J Comput Theor Nanosci. 2013;10:569–72.

    Article  CAS  Google Scholar 

  48. Joughehdoust S, Manafi S. Determination of microstructural parameters of nanocrystalline hydroxyapatite prepared by mechanical alloying method. AIP Conf Proc. 2011;1400(1):486-91.

  49. Uskokovic V, Batarni SS, Schweicher J, King A, Desai TA. Effect of calcium phosphate particle shape and size on their antibacterial and osteogenic activity in the delivery of antibiotics in vitro. ACS Appl Mater Interfaces. 2013;5(7):2422–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Xu HH, Weir MD, Sun L. Nanocomposites with Ca and PO4 release: effects of reinforcement, dicalcium phosphate particle size and silanization. Dent Mater. 2007;23(12):1482–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. El Hazzat M, Sifou A, Arsalane S, El Hamidi A. Novel approach to thermal degradation kinetics of gypsum: application of peak deconvolution and Model-Free isoconversional method. J Therm Anal Calorim. 2020;140:657–71.

    Article  CAS  Google Scholar 

  52. Khachani M, El Hamidi A, Kacimi M, Halim M, Arsalane S. Kinetic approach of multi-step thermal decomposition processes of iron (III) phosphate dihydrate FePO4∙ 2H2O. Thermochim Acta. 2015;610:29–36.

    Article  CAS  Google Scholar 

  53. Sronsri C, Boonchom B. Thermal kinetic analysis of a complex process from a solid-state reaction by deconvolution procedure from a new calculation method and related thermodynamic functions of Mn0.90Co0.05Mg0.05HPO4·3H2O. T Nonferr Metal Soc. 2018;28(9):1887–902.

    Article  CAS  Google Scholar 

  54. Huber C, Jahromy SS, Birkelbach F, Weber J, Jordan C, Schreiner M, Harasek M, Winter F. The multistep decomposition of boric acid. Energy Sci Eng. 2020;8(5):1650–66.

    Article  CAS  Google Scholar 

  55. Starink MJ. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta. 2003;404(1–2):163–76.

    Article  CAS  Google Scholar 

  56. Füglein E. Über den Einfluss der Partikelgröße auf das thermische Verhalten anorganischer Pulver. Z Anorg Allg Chem. 2008;634(11):2039.

    Article  Google Scholar 

  57. Cordes HF. Preexponential factors for solid-state thermal decomposition. J Phys Chem. 1968;72(6):2185–9.

    Article  CAS  Google Scholar 

  58. Avrami M. Kinetics of phase change. I General theory. J Chem Phys. 1939;7(12):1103–12.

    Article  CAS  Google Scholar 

  59. Tanaka H, Koga N, Galwey AK. Thermal dehydration of crystalline hydrates: microscopic studies and introductory experiments to the kinetics of solid-state reactions. J Chem Educ. 1995;72(3):251.

    Article  CAS  Google Scholar 

  60. Šatava V. Mechanism and kinetics from non-isothermal TG traces. Thermochim Acta. 1971;2(5):423–8.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the CNRST-UATRS laboratories for their assistance in the SEM microscopy analyzes and the physicochemical analysis platform for thermal measurements.

Author information

Authors and Affiliations

Authors

Contributions

MEH: Formal analysis and investigation, AS: Formal analysis, SA Supervision.

Corresponding author

Correspondence to Said Arsalane.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

EL Hazzat, M., Sifou, A. & Arsalane, S. Complex thermal kinetic study of calcium phosphate biomaterial CaHPO4 using the asymmetric deconvolution approach. J Therm Anal Calorim 147, 9747–9761 (2022). https://doi.org/10.1007/s10973-022-11229-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11229-3

Keywords

Navigation