Skip to main content
Log in

Synthesis and thermal dehydroxylation kinetic of anhydrous calcium phosphate monetite CaHPO4

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, we have synthesized and performed the thermal decomposition kinetics of anhydrous calcium phosphate monetite CaHPO4 under air atmosphere by TG/DTG and DTA techniques using non-isothermal experiments. The prepared and calcined products at 500 °C were characterized by powder X-ray diffraction, infrared spectroscopy, transmission electron microscopy and X-ray microanalysis. The degradation of CaHPO4 was observed between [425–490 °C] and leads to the formation of calcium pyrophosphate by condensation of orthophosphate groups. The kinetic parameter results achieved by the isoconversional methods combined to Malek’s procedure showed that the thermal dehydroxylation is a single-step process which related to crystal nucleation and growth mechanism, according to JMA (n) model, with n = 1.37 and an activation energy of Friedman E α  = 299.4 ± 2.1 kJ mol−1. The thermodynamic functions (ΔS*, ΔH* and ΔG*) of the thermal dehydroxylation step were calculated using the activated complex theory. The obtained values showed that the reaction is directly related to the introduction of heat and is non-spontaneous process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Dorozhkin SV. Calcium orthophosphates. J Mater Sci. 2007;42:1061–95.

    Article  CAS  Google Scholar 

  2. Dorozhkin SV. Calcium orthophosphates in nature, biology and medicine. Materials. 2009;2:399–498.

    Article  CAS  Google Scholar 

  3. Dorozhkin SV. Calcium orthophosphates: occurence, properties, biomineralization, pathological calcification and biomimetic applications. Biomaterials. 2011;1:121–64.

    Google Scholar 

  4. El Hamidi A, Mulongo Masamba R, Khachani M, Halim M, Arsalane S. Kinetics modeling in liquid phase sorption of copper ions on brushite di-calcium phosphate di-hydrate CaHPO4·2H2O (DCPD). Desalin Water Treat. 2015;56:779–91.

    Article  CAS  Google Scholar 

  5. Da Silva Filho EC, da Silva OG, da Fonseca MG, Arakaki LNH, Airoldi C. Synthesis and thermal characterization of copper and calcium mixed phosphates. J Therm Anal Calorim. 2007;87:775–8.

    Article  Google Scholar 

  6. Da Silva OG, da Fonseca MG, Arakaki LNH. Silylated calcium phosphates and their new behavior for copper retention from aqueous solution. Colloid Surf A. 2007;301:376–81.

    Article  Google Scholar 

  7. Tortet L, Gavarri JR, Nihoul G, Dianoux AJ. Study of protonic mobility in CaHPO4·2H2O (Brushite) and CaHPO4 (Monetite) by infrared spectroscopy and neutron scattering. J Solid State Chem. 1997;132:6–16.

    Article  CAS  Google Scholar 

  8. Doat A, Pellé F, Lebugle A. Europium-doped calcium pyrophosphates: allotropic forms and photoluminescent properties. J Solid State Chem. 2005;178:2354–62.

    Article  CAS  Google Scholar 

  9. Miyazaki T, Sivaprakasam K, Tantry J, Suryanarayanan R. Physical characterization of dibasic calcium phosphate dihydrate and anhydrate. J Pharm Sci. 2009;98:905–16.

    Article  CAS  Google Scholar 

  10. Chen GG, Luo GS, Yang LM, Xu JH, Sun Y, Wang JD. Synthesis and size control of CaHPO4 particles in a two-liquid phase micro-mixing process. J Cryst Growth. 2005;279:501–7.

    Article  CAS  Google Scholar 

  11. Eshtiagh H, Houssaindokht MR, Chahkandhi M, Youssefi A. Preparation of anhydrous dicalcium phosphate, DCPA, through sol–gel process, identification and phase transformation evaluation. J Non-Cryst Solids. 2008;354:3854–7.

    Article  Google Scholar 

  12. Baradaran S, Basirun WJ, Mahmoudian M, Hamdi M, Alias Y. Synthesis and characterization of monetite prepared using a sonochemical method in a mixed solvent system of water/ethylene glycol/N,N-dimethylformamide. Metall Mater Trans A. 2013;44:2231–8.

    Article  Google Scholar 

  13. Dickens B, Bowen JS, Brown WE. A refinement of the crystal structure of CaHPO4 (synthetic monetite). Acta Crystallogr B Struct Sci. 1972;28:797–806.

    Article  CAS  Google Scholar 

  14. Wikholm NW, Beebe RA, Kittelberger JS. Kinetics of the conversion of monetite to calcium pyrophosphate. J Phys Chem. 1975;79:853–6.

    Article  CAS  Google Scholar 

  15. Berend G, Hegedüs AJ. Thermoanalytical investigation of secondary calcium phosphate dehydrate. Thermochim Acta. 1975;11:367–79.

    Article  CAS  Google Scholar 

  16. Hlel F, Kamoun S, Guidara K. Investigation of phosphorus site condensation in CaHPO4 by analysis of 31P MAS–NMR tensor and X-ray powder patterns. Z Naturforsch A. 2006;61:375–82.

    Article  CAS  Google Scholar 

  17. Vyazovkin S, Chrissafis K, Di Lorenzo ML, Koga N, Pijolat M, Roduit B, Sbirrazzuoli N, Suñol JJ. ICTAC kinetics committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim Acta. 2014;590:1–23.

    Article  CAS  Google Scholar 

  18. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  19. Sbirrazzuoli N, Vincent L, Bouillard J, Elégant L. Isothermal and non-isothermal kinetics when mechanistic information available. J Therm Anal Calorim. 1999;56:783–92.

    Article  CAS  Google Scholar 

  20. Brown ME, Gallagher PK. Handbook of thermal analysis and calorimetry: recent advances, techniques and applications. 1st ed. Amsterdam: Elsevier; 2008.

    Google Scholar 

  21. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci Polym Symp. 1964;6:183–95.

    Article  Google Scholar 

  22. Doyle CD. Estimating isothermal life from thermogravimetric data. J Appl Polym Sci. 1962;6:639–42.

    Article  CAS  Google Scholar 

  23. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  24. Coats AW, Redfern JP. Kinetic parameters from thermogravimetric data. Nature. 1964;201:68–9.

    Article  CAS  Google Scholar 

  25. Málek J. The kinetic analysis of non-isothermal data. Thermochim Acta. 1992;200:257–69.

    Article  Google Scholar 

  26. Senum GI, Yang RT. Rational approximations of the integral of the Arrhenius function. J Therm Anal. 1977;11:445–7.

    Article  Google Scholar 

  27. Flynn JH. The “temperature integral”—its use and abuse. Thermochim Acta. 1997;300:83–92.

    Article  CAS  Google Scholar 

  28. Shannon RD. Activated complex theory applied to the thermal decomposition of solids. Trans Faraday Soc. 1964;60:1902–13.

    Article  CAS  Google Scholar 

  29. Eyring H. The activated complex in chemical reactions. J Chem Phys. 1935;3:107–15.

    Article  CAS  Google Scholar 

  30. Ma H, Yan B, Li J, Ren Y, Chen Y, Zhao F, Song J, Hu R. Molecular structure, thermal behavior and adiabatic time-to-explosion of 3,3-dinitroazetidinium picrate. J Mol Struct. 2010;981:103–10.

    Article  CAS  Google Scholar 

  31. Petrov I, Šoptrajanov B, Fuson N, Lawson JR. Infra-red investigation of dicalcium phosphates. Spectrochim Acta A Mol Spectrosc. 1967;23:2637–46.

    Article  CAS  Google Scholar 

  32. Šimon P, Thomas P, Dubaj T, Cibulková Z, Peller A, Veverka M. The mathematical incorrectness of the integral isoconversional methods in case of variable activation energy and the consequences. J Therm Anal Calorim. 2013;115:853–9.

    Google Scholar 

  33. Sbirrazzuoli N, Vincent L, Mija A, Guigo N. Integral, differential and advanced isoconversional methods: complex mechanisms and isothermal predicted conversion–time curves. Chemometr Intell Lab. 2009;96:219–26.

    Article  CAS  Google Scholar 

  34. Koga N, Tanaka H. A physico-geometric approach to the kinetics of solid-state reactions as exemplified by the thermal dehydration and decomposition of inorganic solids. Thermochim Acta. 2002;388:41–61.

    Article  CAS  Google Scholar 

  35. Koga N, Takemoto S, Tatsuya N, Haruhiko T. A kinetic study of the thermal decomposition of iron(III) oxide-hydroxides. Part 3. Shape control and thermal decomposition of α-FeO(OH). Thermochim Acta. 1996;282(283):81–90.

    Article  Google Scholar 

Download references

Acknowledgements

This research was financially supported by University of Mohammed V - Morocco under the Project No. SCH 04/09 and CNRST-Morocco.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adnane El Hamidi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mulongo-Masamba, R., El Kassri, T., Khachani, M. et al. Synthesis and thermal dehydroxylation kinetic of anhydrous calcium phosphate monetite CaHPO4 . J Therm Anal Calorim 124, 171–180 (2016). https://doi.org/10.1007/s10973-015-5130-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-5130-y

Keywords

Navigation