Skip to main content
Log in

Development and comparison of parametric models to predict global solar radiation: a case study for the southern region of Saudi Arabia

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Global and diffuse solar radiation data (measured) on a flat surface and the bright sunshine hours quantity, relative humidity, wind speed, dew point temperature, and total sky coverage for the southern city Najran (18.0 °N 45.4 °E), Saudi Arabia, for 15 Years (2003–2017) are analyzed. The data are collected from the weather station and from “Climate.OneBuilding.Org”. This research aimed to develop, review, and compare performance for the models (empirical) developed to predict global solar radiation. Overall, 121 empirical models are built to define in three categories [Sunshine Duration Fraction (SDF), Modified Sunshine Duration Fraction (MSDF), Non-Sunshine Duration (NSD)] with all possible metrological parameters available for predicting Global Solar Radiation (GSR) that correlated the clearness index to the relative sunshine time and other metrological parameters. Using DataFit® software, the models were created by fitting a model form and extracting the coefficients from all the collected data. A model comparison has been performed, and performance evaluation has been established using some well-known statistical indicators. Therefore, the Global Performance Indicator (GPI) is to be measured using scaled value statistical indicators. The model’s GPI lays within the range of − 6.35 to 0.1585, which demonstrates the top achieving prototype represented by the greatest significance. The developed generalized models (in order Model-63, Model-64, Model-69, Model-57, and Model-22) were included among the top-ranking models as prototypes of high level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

\(H\) :

Monthly mean global solar radiation (MJ m2-day)

\(H_{{\text{o}}}\) :

Monthly mean extraterrestrial solar radiation (MJ m2-day)

\(H_{{{\text{ie}}}} , H_{{{\text{im}}}}\) :

\(i{\text{th}}\) Estimated & measured monthly mean solar radiation (MJ m2-day)

\(H_{{{\text{e}},{\text{av}}}} , H_{{{\text{m}},{\text{av}}}}\) :

Average of estimated & measured solar radiation values (MJ m2-day)

\(n\) :

Julian day of the year

\(S\) :

Monthly mean hours of bright sunshine (hours)

\(S_{{\text{o}}}\) :

Monthly mean hours of maximum possible sunshine (hours)

\({\text{SD}}\) :

Standard deviation of difference between estimated and measured values

T ave :

Monthly average Dry bulb Temperature (°C)

R h :

Monthly average Relative Humidity (In percentage)

S % :

Monthly average Total Sky Cover (In percentage)

T dewpoint :

Monthly average Dew point temperature (°C)

\(\Delta T_{\max - \min }\) :

Monthly average difference in dry bulb temperature extremes (°C)

W speed :

Monthly average value of wind speed (m/s)

References

  1. Solar GIS. SolarGIS data validation for the Kingdom of Saudi Arabia. http://geomodelsolar.eu/_docs/various/SolarGIS_validation_SaudiArabia_2013-02.pdf. Accessed 10 Oct 2021.

  2. Sheikholeslami M, Jafaryar M, Shafee A, Babazadeh H. Acceleration of discharge process of clean energy storage unit with insertion of porous foam considering nanoparticle enhanced paraffin. J Clean Prod. 2020;261:121206.

    Article  CAS  Google Scholar 

  3. Alqaed S, Mustafa J, Sharifpur M, Cheraghian G. Using nanoparticles in solar collector to enhance solar-assisted hot process stream usefulness. Sustain. Energy Technol. Assess. 2022;52(A):101992

  4. Mustafa J, Numerical investigation of the effect of inlet dimensions air duct and distance of battery packs for thermal management of three lithium-ion battery packs. J. Energy Storage. 2022;48:103959.

  5. Dabiri S, Khodabandeh E, Poorfar AK, Mashayekhi R, Toghraie D, Zade SAA. Parametric investigation of thermal characteristic in trapezoidal cavity receiver for a linear Fresnel solar collector concentrator. Energy. 2018;153:17–26.

    Article  Google Scholar 

  6. Mustafa J, Alqaed S, Kalbashi R. Challenging of using CuO nanoparticles in a flat plate solar collector- Energy saving in a solar-assisted hot process stream. J Taiwan Inst Chem Eng. 2021;124:258-265.

  7. Mustafa J. Effect of inlet and outlet size, battery distance, and air inlet and outlet position on the cooling of a lithium-ion battery pack and utilizing outlet air of cooling system to heat an air handling unit. J. Energy Storage. 2022;46:103826.

  8. Toghraie D, Karami A, Afrand M, Karimipour A. Effects of geometric parameters on the performance of solar chimney power plants. Energy. 2018;162:1052–61.

    Article  Google Scholar 

  9. Kalbasi R, Alemrajabi AA, Afrand M. Thermal modeling and analysis of single and double effect solar stills: an experimental validation. Appl Therm Eng. 2018;129:1455–65.

    Article  Google Scholar 

  10. Pazheri FR, Malik NH, Al-Arainy AA, Safoora OK, Othman MF, Al-Ammar AA, TP IA. Use of renewable energy sources in Saudi Arabia through smart grid. J Energy Power Eng. 2012;6(7):1065–70.

    Google Scholar 

  11. Amirahmad A, Maglad AM, Mustafa J, Cheraghian G. Loading PCM Into Buildings Envelope to Decrease Heat Gain-Performing Transient Thermal Analysis on Nanofluid Filled Solar System. Front. Energy Res. 2021;9:727011.

  12. Alqaed S, Mustafa J, Almehmadi FA. Design and Energy Requirements of a Photovoltaic-Thermal Powered Water Desalination Plant for the Middle East. Int. J. Environ. Res. Public Health. 2021;18(3):1001.

  13. Yakup M, Malik AQ. Optimum tilt angle and orientation for solar collector in Brunei Darussalam. Renewable Energy. 2001;24:223–34.

    Article  CAS  Google Scholar 

  14. Alqaed S, Mustafa J, Hallinan KP, Elhashmi R. Hybrid CHP/Geothermal Borehole System for Multi-Family Building in Heating Dominated Climates. Sustainability. 2020;12(18):7772.

  15. Mohandes M, Rehman S, Halawani TO. Estimation of global solar radiation using artificial neural networks. Renew Energy. 1998;1(4):179–84.

    Article  Google Scholar 

  16. Pazheri FR. Solar power potential in Saudi Arabia. Int J Eng Res Appl. 2014;4(9):171–4.

    Google Scholar 

  17. Ahmadi G, Toghraie D, Akbari OA. Solar parallel feed water heating repowering of a steam power plant: a case study in Iran. Renew Sustain Energy Rev. 2017;77:474–85.

    Article  Google Scholar 

  18. Ahmadi G, Toghraie D, Azimian A, Akbari OA. Evaluation of synchronous execution of full repowering and solar assisting in a 200MW steam power plant, a case study. Appl Therm Eng. 2017;112:111–23.

    Article  Google Scholar 

  19. Moghadam MR, Toghraie D, Hashemian M, Ahmadi G. Finding susceptible areas for a 50 MW solar thermal power plant using 4E analysis and multiobjective optimization. J Therm Anal Calorim. 2021;144:1761–82.

    Article  CAS  Google Scholar 

  20. Mustafa J, Alqaed S, Sharifpur M.J Incorporating nano-scale material in solar system to reduce domestic hot water energy demand. Sustain. Energy Technol. Assess. 2022;49:101735.

  21. Mustafa J, Alqaed S, Siddiqui MA. Thermally driven flow of water in partially heated tall vertical concentric annulus. Entropy. 2020;22(10):1189.

  22. KA-CARE. Saudi Arabia’s renewable energy strategy and solar energy deployment roadmap. 2013. https://fanack.com/wp-content/uploads/sites/5/Abdulrahman-Al-Ghabban-Presentation.pdf. Accessed 10 Oct 2021.

  23. Ahmadi G, Toghraie D, Akbari OA. Efficiency improvement of a steam power plant through solar repowering. Int J Exergy. 2017;22(2):158–82.

    Article  CAS  Google Scholar 

  24. Parsa SM, Rahbar A, Koleini MH, Aberoumand S, Afrand M, Amidpour M. A renewable energy-driven thermoelectric-utilized solar still with external condenser loaded by silver/nanofluid for simultaneously water disinfection and desalination. Desalination. 2020;480:114354.

    Article  CAS  Google Scholar 

  25. REN21, MENA renewables status report. 2013. https://www.ren21.net/wp-content/uploads/2019/05/MENA_2013_lowres.pdf. Accessed 10 Oct 2021.

  26. Parsa SM, Rahbar A, Koleini MH, Javadi YD, Afrand M, Rostami S, Amidpour M. First approach on nanofluid-based solar still in high altitude for water desalination and solar water disinfection (SODIS). Desalination. 2020;491:114592.

    Article  CAS  Google Scholar 

  27. Parsa SM, Rahbar A, Javadi YD, Koleini MH, Afrand M, Amidpour M. Energy-matrices, exergy, economic, environmental, exergoeconomic, enviroeconomic, and heat transfer (6E/HT) analysis of two passive/active solar still water desalination nearly 4000m: altitude concept. J Clean Prod. 2020;261:121243.

    Article  Google Scholar 

  28. Angstrom A. Solar and terrestrial radiation. Report to the international commission for solar research on actinometric investigations of solar and atmospheric radiation. Q J R Meteorol Soc. 1924;50(210):121–6.

    Article  Google Scholar 

  29. Prescott J. Evaporation from water surface in relation to solar radiation. R Soc Aust. 1940;64:114–8.

    Google Scholar 

  30. Despotovic M, Nedic V, Despotovic D, Cvetanovic S. Review and statistical analysis of different global solar radiation sunshine models. Renew Sustain Energy Rev. 2015;52:1869–80.

    Article  Google Scholar 

  31. Fan J, Chen B, Wu L, Zhang F, Lu X, Xiang Y. Evaluation and development of temperature-based empirical models for estimating daily global solar radiation in humid regions. Energy. 2018;144:903–14.

    Article  Google Scholar 

  32. Rao DVSK, Premalatha M, Naveen C. Models for forecasting monthly mean daily global solar radiation from in-situ measurements: application in Tropical Climate. India Urban Climate. 2018;24:921–39.

    Article  Google Scholar 

  33. Makade RG, Jamil B. Statistical analysis of sunshine based global solar radiation (GSR) models for tropical wet and dry climatic Region in Nagpur, India: a case study. Renew Sustain Energy Rev. 2018;87:22–43.

    Article  Google Scholar 

  34. Besharat F, Dehghan AA, Faghih AR. Empirical models for estimating global solar radiation: a review and case study. Renew Sustain Energy Rev. 2013;21:798–821.

    Article  Google Scholar 

  35. Bayrakç HC, Demircan C, Keçebaş A. The development of empirical models for estimating global solar radiation on horizontal surface: a case study. Renew Sustain Energy Rev. 2018;81:2771–82.

    Article  Google Scholar 

  36. Khan MM, Ahmad MJ, Jamil B. Development of models for the estimation of global solar radiation over selected stations in India. Energy, Transportation and Global Warming. Springer; 2016. p. 149–60.

    Google Scholar 

  37. Rietveld MR. A new method for estimating the regression coefficients in the formula relating solar radiation to sunshine. Agric Meteorol. 1978;19(2–3):243–52.

    Article  Google Scholar 

  38. Hay JE. Calculation of monthly mean solar radiation for horizontal and inclined surfaces. Sol Energy. 1979;23(4):301–7.

    Article  Google Scholar 

  39. Khogali A, Ramadan MRI, Ali ZEH, Fattah YA. Global and diffuse solar irradiance in Yemen (Y.A.R.). Sol Energy. 1983;31(1):55–62.

    Article  Google Scholar 

  40. Bahel V, Bakhsh H, Srinivasan R. A correlation for estimation of global solar radiation. Energy. 1987;12(2):131–5.

    Article  Google Scholar 

  41. Lewis G. An empirical relation for estimating global irradiation for Tennessee, U.S.A. Energy Convers Manag. 1992;33(12):1097–9.

    Article  Google Scholar 

  42. Hinrichsen K. The Ångström formula with coefficients having a physical meaning. Sol Energy. 1994;52(6):491–5.

    Article  Google Scholar 

  43. Ertekin C, Yaldiz O. Comparison of some existing models for estimating global solar radiation for Antalya (Turkey). Energy Convers Manag. 2000;41(4):311–30.

    Article  Google Scholar 

  44. Tarhan S, Sari A. Model selection for global and diffuse radiation over the Central Black Sea (CBS) region of Turkey. Energy Convers Manag. 2005;46(4):605–13.

    Article  Google Scholar 

  45. Mubiru J, Banda EJKB. Estimation of monthly average daily global solar irradiation using artificial neural networks. Sol Energy. 2008;82(2):181–7.

    Article  Google Scholar 

  46. El-Sebaii AA, Al-Hazmi FS, Al-Ghamdi AA, Yaghmour SJ. Global, direct and diffuse solar radiation on horizontal and tilted surfaces in Jeddah, Saudi Arabia. Appl Energy. 2010;87:568–76.

    Article  Google Scholar 

  47. Rahimi I, Bakhtiari B, Qaderi K, Aghababaie M. Calibration of angstrom equation for estimating solar radiation using meta-Heuristic harmony search algorithm (Case study: Mashhad-east of Iran). Energy Procedia. 2012;18:644–51.

    Article  Google Scholar 

  48. Mecibah MS, Boukelia TE, Tahtah R, Gairaa K. Introducing the best model for estimation the monthly mean daily global solar radiation on a horizontal surface (Case study: Algeria). Renew Sustain Energy Rev. 2014;36:194–202.

    Article  Google Scholar 

  49. Kirmani S, Jamil M, Rizwan M. Empirical correlation of estimating global solar radiation using meteorological parameters. Int J Sustain Energy. 2015;34:327–39.

    Article  Google Scholar 

  50. Ayodele TR, Ogunjuyigbe ASO. Performance assessment of empirical models for prediction of daily and monthly average global solar radiation: the case study of Ibadan. Nigeria Int J Ambient Energy. 2017;38(8):803–13.

    Article  Google Scholar 

  51. Hassan GE, Youssef ME, Mohamed ZE, Ali MA, Hanafy AA. New temperature-based models for predicting global solar radiation. Appl Energy. 2016;179:437–50.

    Article  Google Scholar 

  52. Zhang J, Zhao L, Deng S, Xu W, Zhang Y, Yıldırım HB, Çelik Ö, Teke A, Barutçu B. A critical review of the models used to estimate solar radiation. Renew Sustain Energy Rev. 2017;70:314–29.

    Article  Google Scholar 

  53. Yıldırıma HB, Tekeb A, Antonanzas-Torres F. Evaluation of classical parameteric models for estimating solar radiation in the eastern Mediterranean region of Turkey. Renew Sustain Energy Rev. 2018;82:2053–65.

    Article  Google Scholar 

  54. Yıldırım HB, Çelik Ö, Teke A, Barutçu B. Estimating daily Global solar radiation with graphical user interface in Eastern Mediterranean region of Turkey. Renew Sustain Energy Rev. 2018;82:1528–37.

    Article  Google Scholar 

  55. Keshtegara B, Mertb C, Kisic O. Comparison of four heuristic regression techniques in solar radiation modeling: Kriging method vs RSM, MARS and M5 model tree. Renew Sustain Energy Rev. 2018;81:330–41.

    Article  Google Scholar 

  56. Nwokolo SC, Ogbulezie JC. A quantitative review and classification of empirical models for predicting global solar radiation in West Africa. Beni-Suef Univ J Basic Appl Sci. 2018;7:367–96.

    Google Scholar 

  57. Jamil B, Irshad K, Algahtani A, Islam S, Ali MA, Shahab A. On the calibration and applicability of global solar radiation models based on temperature extremities in India. Environ Prog Sustain Energy. 2020;39:13236.

    Article  CAS  Google Scholar 

  58. Anis MS, Jamil B, Ansari MA, Bellos E. Generalized models for estimation of global solar radiation based on sunshine duration and detailed comparison with the existing: a case study for India. Sustain Energy Technol Assess. 2019;31:179–98.

    Google Scholar 

  59. Bakirci K. Models of solar radiation with hours of bright sunshine: a review. Renew Sustain Energy Rev. 2009;13:2580–8.

    Article  Google Scholar 

  60. Al-Mostafa ZA, Maghrabi AH, Al-shehri SM. Assessment of sunshine-based global radiation models using data measured in Riyadh, Saudi Arabia. J Energy Inst. 2012;21(85):114.

    Article  CAS  Google Scholar 

  61. Ampratwum B, Dorvlo S. Estimation of solar radiation from the number of sunshine hours. Appl Energy. 1999;63:161–7.

    Article  Google Scholar 

  62. Ogelman H, Ecevit A, Tasdemiroglu E. A new method for estimating solar radiation from bright sunshine data. Sol Energy. 1984;33(6):619–25.

    Article  Google Scholar 

  63. Al-Mostafa ZA, Maghrabi AH, Al-Shehri SM. Sunshine-based global radiation models: a review and case study. Energy Convers Manage. 2014;84:209–16.

    Article  Google Scholar 

  64. Jamil B, Siddiqui AT. Generalized models for estimation of diffuse solar radiation based on clearness index and sunshine duration in India: applicability under different climatic zones. J Atmos Solar Terr Phys. 2017;157–158:16–34.

    Article  Google Scholar 

  65. Jamil B, Siddiqui AT. Estimation of monthly mean diffuse solar radiation over India: Performance of two variable models under different climatic zones. Sustain Energy Technol Assess. 2018;25:161–80.

    Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Researchers Supporting Project number (RSP2022R515), King Saud University, Riyadh, Saudi Arabia for funding this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jawed Mustafa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mustafa, J., Alqaed, S., Almehmadi, F.A. et al. Development and comparison of parametric models to predict global solar radiation: a case study for the southern region of Saudi Arabia. J Therm Anal Calorim 147, 9559–9589 (2022). https://doi.org/10.1007/s10973-022-11209-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11209-7

Keywords

Navigation