Skip to main content
Log in

Finding susceptible areas for a 50 MW solar thermal power plant using 4E analysis and multiobjective optimization

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In the present study, a power plant design was first carried out using thermo flow software. Energy, exergy, economic, environmental, and economic (4E) analyses were carried out to supply 50 MW solar power. Using solar energy throughout the year, the amount of reducing atmospheric pollutants, reducing the consumption of fossil fuels, reducing the cost of electricity production, the amount of energy produced and exergy, the amount of exergy destruction, the rate of application and efficiency of the power plant have been obtained. Finally, the proposed cycle is optimized multi-objectively, using genetic algorithm in MATLAB. The results show that the use of solar power plants significantly reduces atmospheric pollutants by 1,559,990.6 tons per year, reducing fossil fuel consumption by 47,143.9 tons per year, and significantly reducing energy consumption despite the low cost of energy carriers in Iran. Also, according to the results, the central regions of Iran are much more suitable for the construction of the power plant, which can generate annual sales of 37,356,480$ per year. The use of solar energy increases the relative cost of the project to significantly reduce the amount of fuel consumed, which ultimately includes a faster return on investment. Finally, it can be argued that the use of the solar thermal power plant is justified from energy, exergy, economic, and environmental. It should be noted that the increase of \(\eta_{{\text{isen,ST}}}\) will require an increase in initial investment to use higher technologies in the turbine, so increasing the level of equipment technology to increase efficiency to 88% is reasonable and will not be more than that.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Abbreviations

A :

Aria (m2)

B :

Boiler

C :

Condenser

CLFR:

Compact linear fresnel reflector

CRF:

Capital recovery factor (%)

\(\Delta T\) :

Temperature difference (°C)

CT:

Cooling tower

CWP:

Cooling water pump

DE:

Deaerator

DP:

Drip pump

e :

Specific energy (kJ kg1)

E :

Total energy (kJ)

EC:

Economizer

EV:

Evaporator

EX:

Flow exergy

\(f\) :

Dilution factor

g :

The gravity of earth (m s2)

h :

Specific enthalpy (kJ kg1)

HPT:

High-pressure turbine

HR:

Heat rate (kJ kW1 h1)

HTF:

Heat transfer fluid

\(\dot{I}\) :

Destroyed exergy (kW)

IPT:

Intermediate pressure turbine

LPT:

Low-pressure turbine

\(\dot{m}\) :

Mass flow rate (kg s1)

P :

Pressure (bar)

PTC:

Parabolic trough collector

Q :

Heat (kW)

\(\overline{R}\) :

World constant for gases

RC:

Rankin cycle

s :

Specific entropy (kJ kg1 K1)

SC:

Simple cycle

SD:

Solar dishes

SH:

Superheating

T :

Temperature (°C)

TCI:

Total cost investment ($)

v :

Velocity (m s1)

W :

Work (kW)

z :

Elevation (m)

Ql:

Heat loss (kW)

\(Z\) :

Cost ($, $ kWh1)

\(\varphi\) :

Operation and maintenance factor

\(\gamma\) :

Specific heat ratio

\(\eta_{{\text{I}}}\) :

First low efficiency

\(\eta_{{{\text{II}}}}\) :

Second low efficiency

\(\zeta\) :

Exergy of fuels

ψ :

Specific exergy (kW kg1)

a:

Air

amb:

Ambient

c:

Solar collector

ct:

Cooling tower

con:

Condenser

c.v:

Control volume

d:

Direct

de:

Deaerator

des:

Destroyed

f:

Fuel

fw:

Feed water

hex:

Heat exchanger

i:

Inlet

o:

Outlet

OM:

Operation and maintenance

PEC:

Purchase equipment cost

reh:

Reheater

s:

Solar

sf:

Solar field

st:

Steam turbine

th:

Thermal

References

  1. He Y-L, Mei D-H, Tao W-Q, Yang W-W, Liu H-L. Simulation of the parabolic trough solar energy generation system with organic Rankin cycle. Appl Energy. 2012;97:630–41.

    CAS  Google Scholar 

  2. Zoghi M, Ehsani AH, Sadat M, Amiri MJ, Karimi S. Optimization solar site selection by fuzzy logic model and weighted liner combination method in arid and semi-arid region: a case study Isfahan-IRAN. Renew Sustain Energy Rev. 2015;68:986–96.

    Google Scholar 

  3. Karimi-Maleh  H, Karimi F, Orooji Y, Mansouri G, Razmjou A, Aygun A, Sen F. A new nickel-based co-crystal complex electrocatalyst amplified by NiO dope Pt nanostructure hybrid; a highly sensitive approach for determination of cysteamine in the presence of serotonin. Sci Rep. 2020;10:11699.

    PubMed  PubMed Central  CAS  Google Scholar 

  4. Karimi-Maleh H, Kumar BG, Rajendran S, Qin J, Vadivel S, Durgalakshmi D, Gracia F, Soto-Moscoso M, Orooji Y, Karimi F. Tuning of metal oxides photocatalytic performance using Ag nanoparticles integration. J Mol Liq. 2020;314:113588.

    CAS  Google Scholar 

  5. Karimi-Maleh H, Karimi F, Malekmohammadi S, Zakariae N, Esmaeili R, Rostamnia S, Lütfi Yola M, Atar N, Movaghgharnezhad S, Rajendran S, Razmjou A, Orooji Y, Agarwal S, KumarGupta V. An amplified voltammetric sensor based on platinum nanoparticle/polyoxometalate/two-dimensional hexagonal boron nitride nanosheets composite and ionic liquid for determination of N-hydroxysuccinimide in water samples. J Mol Liq. 2020;310:113185.

    CAS  Google Scholar 

  6. Karimi-Maleh H, Shafieizadeh M, Taher MA, Opoku F, Muriithi Kiarii E, Penny Govender P, Ranjbari S, Rezapour M, Orooji Y. The role of magnetite/graphene oxide nano-composite as a high-efficiency adsorbent for removal of phenazopyridine residues from water samples, an experimental/theoretical investigation. J Mol Liq. 2020;298:112040.

    CAS  Google Scholar 

  7. Tao T, Hongfei Z, Kaiyan H, Mayere A. A new trough solar concentrator and its performance analysis. Sol Energy. 2011;85:198–207.

    Google Scholar 

  8. Zaaraoui A, Yousfi M, Said N. Technical and economical performance of parabolic trough collector power plant under Algerian climate. Procedia Eng. 2012;33:78–91.

    Google Scholar 

  9. Wang F, Li H, Zhao J, Deng S, Yan J. Technical and economic analysis of integrating low-medium temperature solar energy into power plant. Energy Convers Manag. 2016;112:459–69.

    CAS  Google Scholar 

  10. Bishoyi D, Sudhakar K. Modeling and performance simulation of 100 MW LFR based solar thermal power plant in Udaipur India. Resour Effic Technol. 2017;3:365–77.

    Google Scholar 

  11. Ahmadi G, Toghraie D, Azimian AR, Akbari A. Evaluation of synchronous execution of full repowering and solar assisting in a 200MW steam power plant, a case study. Appl Therm Eng. 2017;112:111–23.

    Google Scholar 

  12. Ahmadi G, Toghraie D, Akbari A. Solar parallel feed water heating repowering of a steam power plant: a case study in Iran. Renew Sustain Energy Rev. 2017;77:474–85.

    Google Scholar 

  13. Zekiyilmazoglu M, Durmaz A, Baker D. Solar repowering of soma-a thermal power plant. Energy Convers Manag. 2012;64:232–7.

    Google Scholar 

  14. Jamel MS, Rahman A, Shamsuddin AH. Advances in the integration of solar thermal energy with conventional and non-conventional power plants. Renew Sustain Energy Rev. 2013;20:71–81.

    Google Scholar 

  15. Alamdari P, Nematollahi O, Alemrajabi A. Solar energy potentials in Iran: a review. Renew Sustain Energy Rev. 2013;21:778–88.

    Google Scholar 

  16. Tempesti D, Fiaschi D. Thermo-economic assessment of a micro CHP system fuelled by geothermal and solar energy. Energy. 2013;58:45–51.

    CAS  Google Scholar 

  17. Najafi G, Ghobadian B, Mamat R, Yusaf T, Azmi WH. Solar energy in Iran: current state and outlook. Renew Sustain Energy Rev. 2015;49:931–42.

    Google Scholar 

  18. Hamidi A. Energetic and exergetic analyses of a direct steam generation solar thermal power plant in Cyprus. Famagusta: Eastern Mediterranean University; 2012.

    Google Scholar 

  19. Ruzzenenti F, Bravi M, Tempesti D, Salvatici M, Manfrida D, Basosi R. Evaluation of the environmental sustainability of a micro CHP system fueled by low-temperature geothermal and solar energy. Energy Convers Manag. 2014;78:611–6.

    Google Scholar 

  20. Reddy KS, Ravi Kumar K. Solar collector field design and viability analysis of stand-alone parabolic trough power plants for Indian conditions. Energy Sustain Dev. 2012;16:456–70.

    Google Scholar 

  21. Ranjan K, Reddy V, Kaushik S, Tyagi S. State of the art of solar thermal power plants. Renew Sustain Energy Rev. 2013;27:258–73.

    Google Scholar 

  22. Calise F, Accadia MD, Vicidomini M, Scarpellino M. Design and simulation of a prototype of a small-scale solar CHP system based on evacuated flat-plate solar collectors and Organic Rankine Cycle. J Energy Convers Manag. 2015;90:347–63.

    Google Scholar 

  23. Ahmadi G, Toghraie D. Energy and exergy analysis of Montazeri steam power plant in Iran. Renew Sustain Energy Rev. 2016;56:454–63.

    Google Scholar 

  24. Borgnakke C, Richard ES. fundamentals of thermodynamics. Hoboken: Wiley; 2009.

    Google Scholar 

  25. Kalogirou S. Solar energy engineering. Cambridge: Academic Press; 2009. (978-0-12-374501-9).

    Google Scholar 

  26. Hu E, Yang YP, Nishimura A, Yilmaz F, Kouzani A. Solar thermal aided power generation. Appl Energy. 2010;87:2881–5.

    Google Scholar 

  27. Winter CJ, Sizmann RL, Vant-Hull LL. Solar power plants: fundamentals, technology, systems, economics. New York: Springer; 1991.

    Google Scholar 

  28. Ahmadi G, Akbari O, Zarringhalam M. Energy and exergy analyses of patial repowering of a natural gas-fired power plant. Int J Exergy. 2017;23(2):149–68.

    CAS  Google Scholar 

  29. Nikbakht Naserabad S, Mehrpanahi A, Ahmadi G. Multi-objective optimization of feed-water heater arrangement options in a steam power plant repowering. J Clean Prod. 2019a;220:253–70.

    Google Scholar 

  30. Nikbakht Naserabad S, Mehrpanahi A, Ahmadi G. Multi-objective optimization of HRSG configurations on the steam power plant repowering specifications. Energy. 2018;159:277–93.

    Google Scholar 

  31. Ahmadi G, Toghraie D, Akbari O. Technical and environmental analysis of repowering the existing CHP system in a petrochemical plant: a case study. Energy. 2018;159:937–49.

    Google Scholar 

  32. Nikbakht Naserabad S, Mehrpanahi A, Ahmadi G. Multi-objective linear regression based optimization of full repowering a single pressure steam power plant. Energy. 2019b;179:1017–35.

    Google Scholar 

  33. Nikbakht Naserabad S, Mobini K, Mehrpanahi A, Aligoodarz MR. Multi objective optimization of converting an old steam power plant to combined cycle power plant (ccpp) via genetic algorithm. J Appl Comput Sci Mech J Sch Eng. 2016;27(2):129–39.

    Google Scholar 

  34. Abdalisousan A, Fani M, Farhanieh B, Abbaspour M. Effect of decision variables in the steam section for the exergoeconomic analysis of TCCGT power plant: a case study. Energy Environ Energy Environ. 2014;25(4):1381–404.

    Google Scholar 

  35. Massardo AF, Scialo M. Thermoeconomic analysis of gas turbine based cycle. J Eng Gas Turbines Power ASME. 2000;122:664–71.

    Google Scholar 

  36. Arefi-Oskoui S, Khataee A, Safarpour M, Orooji Y, Vatanpour V. A review on the applications of ultrasonic technology in membrane bioreactors. Ultrason Sonochem. 2019;58:104633.

    PubMed  CAS  Google Scholar 

  37. Ejeian F, Azadi S, Razmjou A, Orooji Y, Kottapalli A, Ebrahimi  Warkiani M, Asadnia M. Design and applications of MEMS flow sensors: a review. Sens Actuat A Phys. 2019;295:483–502.

    CAS  Google Scholar 

  38. Gholami P, Dinpazhoh L, Khataee A, Orooji Y. Sonocatalytic activity of biochar-supported ZnO nanorods in degradation of gemifloxacin: synergy study, effect of parameters and phytotoxicity evaluation. Ultrason Sonochem. 2019;55:44–56.

    PubMed  CAS  Google Scholar 

  39. Hassandoost R, Pouran SR, Khataee A, Orooji Y, Joo SW. Hierarchically structured ternary heterojunctions based on Ce3+/Ce4+ modified Fe3O4 nanoparticles anchored onto graphene oxide sheets as magnetic visible-light-active photocatalysts for decontamination of oxytetracycline. J Hazard Mater. 2019;376:200–11.

    PubMed  CAS  Google Scholar 

  40. Orooji Y, et al. Co-reinforcing of mullite-TiN-CNT composites with ZrB2 and TiB2 compounds. Ceram Int. 2019;45:20844–54.

    CAS  Google Scholar 

  41. Pandya B, Kumar V, Matawala V, Patel J. Thermal comparison and multi-objective optimization of single-stage aqua-ammonia absorption cooling system powered by different solar collectors. J Therm Anal Calorim. 2018;133(3):1635–48.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davood Toghraie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moghadam, M.R., Toghraie, D., Hashemian, M. et al. Finding susceptible areas for a 50 MW solar thermal power plant using 4E analysis and multiobjective optimization. J Therm Anal Calorim 144, 1761–1782 (2021). https://doi.org/10.1007/s10973-020-10371-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10371-0

Keywords

Navigation