Skip to main content
Log in

Applications of Nano-Additives in Internal Combustion Engines: A Critical Review

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This paper highlights the applications of nanotechnology that are used in internal combustion engines in terms of nanofluids. Nanofluids are prepared by dispersing or blending nano-sized particles in a base fluid (viz., H2O, lubricant oil, glycol, biodiesel, diesel, etc.) to achieve desirable attributes in a specific field. The addition of nanoparticles to any base fuels causes thermo-physical and thermochemical properties changes, which are the foremost requisite in most engineering applications. In this paper, the applications of nanoparticles in internal combustion engines have been discussed in-depth in terms of catalytic applications, thermochemical properties, emission, and performance attributes of diesel engines, etc. Recent information reveals that the existence of nanoparticles is widespread as it plays a vital role in modifying the fuel properties (namely, calorific value, cetane number, density, viscosity, flash point, fire point, etc.). In some research attempts, nanoparticles are also considered as coolant in internal combustion engine applications, irrespective of fuels used in power generation. Several researchers have recently introduced nano-additives (such as alumina, carbon nanotubes, zinc oxide, aluminum) to serve as a fuel-borne catalyst to boost internal combustion engine functionality. It has also been reported that nanoparticles enhance performance and reduce harmful pollutants compared to pure fuels (such as pure diesel and pure biodiesel). Superior surface/volume ratio and catalytic/chemical reactivity are vital attributes of nanoparticles, influencing researchers and scientists to utilize them in the internal combustion engine applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

BD:

Biodiesel

CC:

Combustion chamber

CI:

Compression ignition

CO2 :

Carbon dioxide

CO:

Carbon monoxide

CNT:

Carbon nanotubes

D:

Diesel

HC:

Hydrocarbons

NOx :

Nitrogen oxide

PM:

Particulate matter

ID:

Ignition delay

HRR:

Heat release rate

D2S15W:

15% H2O + 83% diesel + 2% surfactants

DEE:

Diethyl ether

DiSOME:

Dairy scum oil methyl ester

D2S15W25A:

25 ppm alumina + 83% diesel + 2% surfactants + 15% H2O

D2S15W50A:

50 ppm alumina + 83% diesel + 2% surfactants + 15% H2O

D2S15W100A:

100 ppm alumina + 83% diesel + 2% surfactants + 15% H2O

JBD:

Jatropha biodiesel

JBD25A:

25 ppm alumina + jatropha biodiesel

JBD50A:

50 ppm alumina + jatropha biodiesel

JBD25CNT:

25 ppm CNT + jatropha biodiesel

JBD50CNT:

50 ppm CNT + jatropha biodiesel

JBD25A25CNT:

25 ppm Alumina + 25 ppm of CNT + jatropha biodiesel

JME:

Jatropha methyl esters

JME5W:

5% H2O + 91% jatropha methyl esters

JME5W50CNT:

5% H2O + 50 ppm CNT + 91% jatropha methyl esters

JME5W50DEE:

5% H2O + 50 ml DEE + 91% jatropha methyl esters

JME5W50CNT50DEE:

5% H2O + 50 ppm CNT + 50 ml DEE + 91% jatropha methyl esters

References

  1. Waqas H, Farooq U, Alshehri HM, Goodarzi M. Marangoni-bioconvectional flow of Reiner-Philippoff nanofluid with melting phenomenon and nonuniform heat source/sink in the presence of a swimming microorganisms. Math Methods Appl Sci. 2021;1:1. https://doi.org/10.1002/mma.7727

    Google Scholar 

  2. Safaei MR, Elkotb MA, Alsharif AM, Mansir IB, Alamri S, Tirth V, Goodarzi M. An innovative design of a high strength and low weight sudden micro expansion by considering a nanofluid: Electronic cooling application. Case Stud Therm Eng. 2021;1:101637.

    Article  Google Scholar 

  3. Farahani SD, Alibeigi M, Zakinia A, Goodarzi M. The effect of microchannel-porous media and nanofluid on temperature and performance of CPV system. J Therm Anal Calorim. 2021;1:1–16. https://doi.org/10.1007/s10973-021-11087-5

    Google Scholar 

  4. Ahmed S, Sarim Imam S, Zafar A, Ali A, Aqil M, Gull A. In vitro and preclinical assessment of factorial design based nanoethosomes transgel formulation of an opioid analgesic. Artif Cells Nanomed Biotechnol. 2016;44:1793–802.

    Article  CAS  PubMed  Google Scholar 

  5. Thapa C, Ahad A, Aqil M, Imam SS, Sultana Y. Formulation and optimization of nanostructured lipid carriers to enhance oral bioavailability of telmisartan using Box-Behnken design. J Drug Deliv Sci Technol. 2018;44:431–9.

    Article  CAS  Google Scholar 

  6. Gao T, Zhang Y, Li C, Wang Y, An Q, Liu B, Said Z, Sharma S. Grindability of carbon fiber reinforced polymer using CNT biological lubricant. Sci Rep. 2021;11:1–14.

    Article  CAS  Google Scholar 

  7. Sun R, He C, Fu L, Huo J, Zhao C, Li X, Song Y, Wang S. Defect engineering for high-selection-performance of NO reduction to NH3 over CeO2 (111) surface: a DFT study. Chin Chem Lett. 2021;1:1.

    Google Scholar 

  8. Ali HM. Recent advancements in PV cooling and efficiency enhancement integrating phase change materials based systems–A comprehensive review. Sol Energy. 2020;197:163–98.

    Article  Google Scholar 

  9. Alqahtani S, Ali HM, Farukh F, Silberschmidt VV, Kandan K. Thermal performance of additively manufactured polymer lattices. J Build Eng. 2021;39:102243.

    Article  Google Scholar 

  10. Shahsavar A, Entezari S, Askari IB, Ali HM. The effect of using connecting holes on heat transfer and entropy generation behaviors in a micro channels heat sink cooled with biological silver/water nanofluid. Int Commun Heat Mass Transf. 2021;123:1029.

    Article  CAS  Google Scholar 

  11. Zhao C, Xi M, Huo J, He C. B-Doped 2D-InSe as a bifunctional catalyst for CO2/CH4 separation under the regulation of an external electric field. Phys Chem Chem Phys. 2021;23:23219–24.

    Article  CAS  PubMed  Google Scholar 

  12. Wu H, Zhang F, Zhang Z. Fundamental spray characteristics of air-assisted injection system using aviation kerosene. Fuel. 2021;286:1120.

    Article  Google Scholar 

  13. Parsa SM, Majidniya M, Alawee WH, Dhahad HA, Ali HM, Afrand M, Amidpour M. Thermodynamic, economic, and sensitivity analysis of salt gradient solar pond (SGSP) integrated with a low-temperature multi effect desalination (MED): Case study, Iran. Sustain Energy Technol Assessm. 2021;47:101478.

    Google Scholar 

  14. Pordanjani AH, Aghakhani S, Afrand M, Sharifpur M, Meyer JP, Xu H, Ali HM, Karimi N, Cheraghian G. Nanofluids: Physical phenomena, applications in thermal systems and the environment effects-a critical review. J Cleaner Prod. 2021;1:128573.

    Article  CAS  Google Scholar 

  15. Ejaz A, Babar H, Ali HM, Jamil F, Janjua MM, Fattah IR, Said Z, Li C. Concentrated photovoltaics as light harvesters: Outlook, recent progress, and challenges. Sustain Energy Technol Assessm. 2021;46:101199.

    Google Scholar 

  16. Wang R, He C, Chen W, Fu L, Zhao C, Huo J, Sun C. Design strategies of two-dimensional metal–organic frameworks toward efficient electrocatalysts for N2 reduction: cooperativity of transition metals and organic linkers. Nanoscale. 2021;13:19247–54.

    Article  CAS  PubMed  Google Scholar 

  17. Suryanarayana C, Koch C. Nanocrystalline materials–Current research and future directions. Hyperfine Interact. 2000;130:5–44.

    Article  CAS  Google Scholar 

  18. Ağbulut Ü, Elibol E, Demirci T, Sarıdemir S, Gürel AE, Rajak U, Afzal A, Verma TN. Synthesis of graphene oxide nanoparticles and the influences of their usage as fuel additives on CI engine behaviors. Energy. 2021;1:122603.

    Google Scholar 

  19. Jamshed W, Goodarzi M, Prakash M, Nisar KS, Zakarya M, Abdel-Aty A-H. Evaluating the unsteady casson nanofluid over a stretching sheet with solar thermal radiation: An optimal case study. Case Stud Therm Eng. 2021;1:1060.

    Google Scholar 

  20. Akram N, Montazer E, Kazi S, Soudagar MEM, Ahmed W, Zubir MNM, Afzal A, Muhammad MR, Ali HM, Márquez FPG. Experimental investigations of the performance of a flat-plate solar collector using carbon and metal oxides based nanofluids. Energy. 2021;227:1252.

    Article  CAS  Google Scholar 

  21. Hafeez A, Kazmi I. Dacarbazine nanoparticle topical delivery system for the treatment of melanoma. Sci Rep. 2017;7:1–10.

    Article  CAS  Google Scholar 

  22. Waqas H, Farooq U, Khan SA, Alshehri HM, Goodarzi M. Numerical analysis of dual variable of conductivity in bioconvection flow of Carreau-Yasuda nanofluid containing gyrotactic motile microorganisms over a porous medium. J Therm Anal Calorim. 2021;1:1–12. https://doi.org/10.1007/s10973-021-10859-3

    Google Scholar 

  23. Liu S, Liu C, Huang Y, Xiao Y. Direct modulation pattern control for dual three-phase PMSM drive system. IEEE Trans Ind Electron. 2021;1:1.

    Google Scholar 

  24. Khosravi R, Rabiei S, Khaki M, Safaei MR, Goodarzi M. Entropy generation of graphene–platinum hybrid nanofluid flow through a wavy cylindrical microchannel solar receiver by using neural networks. J Therm Anal Calorim. 2021;145:1949–1967.

    Article  CAS  Google Scholar 

  25. Qureshi FA, Ahmad N, Ali HM. Heat dissipation in bituminous asphalt catalyzed by different metallic oxide nanopowders. Construct Build Mater. 2021;276:1220.

    Article  CAS  Google Scholar 

  26. Mahian O, Bellos E, Markides CN, Taylor RA, Alagumalai A, Yang L, Qin C, Lee BJ, Ahmadi G, Safaei MR. Recent advances in using nanofluids in renewable energy systems and the environmental implications of their uptake. Nano Energy. 2021;1:1069.

    Google Scholar 

  27. Said Z, Sundar LS, Tiwari AK, Ali HM, Sheikholeslami M, Bellos E, Babar H. Recent advances on the fundamental physical phenomena behind stability, dynamic motion, thermophysical properties, heat transport, applications, and challenges of nanofluids. Phys Rep. 2021;1:1.

    Google Scholar 

  28. Wich P. Size-comparison-Bio-nanoparticles nanometer scale comparison nanoparticle size comparison nanotechnology chart ruler. In: WICHLab;2018.

  29. Dreizin EL, Schoenitz M. Reactive and metastable nanomaterials prepared by mechanical milling. Metal Nanopowd Prod Characteriz Energet Appl. 2014;1:227–78.

    Article  Google Scholar 

  30. Yetter RA, Risha GA, Son SF. Metal particle combustion and nanotechnology. Proc Combust Inst. 2009;32:1819–38.

    Article  CAS  Google Scholar 

  31. Kuo KK, Risha GA, Evans BJ, Boyer E. Potential usage of energetic nano-sized powders for combustion and rocket propulsion. MRS Online Proc Lib (OPL). 2003;800:1.

    Google Scholar 

  32. Mazari SA, Ali E, Abro R, Khan FSA, Ahmed I, Ahmed M, Nizamuddin S, Siddiqui TH, Hossain N, Mubarak NM. Nanomaterials: applications, waste-handling, environmental toxicities, and future challenges—a review. J Environ Chem Engineering. 2021;1:105028.

    Article  CAS  Google Scholar 

  33. Gavhane RS, Kate AM, Pawar A, Safaei MR, Soudagar MEM, Mujtaba Abbas M, Muhammad Ali H, Banapurmath NR, Goodarzi M, Badruddin IA. Effect of zinc oxide nano-additives and soybean biodiesel at varying loads and compression ratios on VCR diesel engine characteristics. Symmetry. 2020;12:1042.

    Article  CAS  Google Scholar 

  34. Hussain F, Soudagar MEM, Afzal A, Mujtaba M, Fattah I, Naik B, Mulla MH, Badruddin IA, Khan T, Raju VD. Enhancement in combustion, performance, and emission characteristics of a diesel engine fueled with Ce-ZnO nanoparticle additive added to soybean biodiesel blends. Energies. 2020;13:4578.

    Article  CAS  Google Scholar 

  35. Sadri R, Hosseini M, Kazi S, Bagheri S, Zubir N, Ahmadi G, Dahari M, Zaharinie T. A novel, eco-friendly technique for covalent functionalization of graphene nanoplatelets and the potential of their nanofluids for heat transfer applications. Chem Phys Lett. 2017;675:92–7.

    Article  CAS  Google Scholar 

  36. Stoeva SI, Huo F, Lee J-S, Mirkin CA. Three-layer composite magnetic nanoparticle probes for DNA. J Am Chem Soc. 2005;127:15362–3.

    Article  CAS  PubMed  Google Scholar 

  37. Idriss H. Ethanol reactions over the surfaces of noble metal/cerium oxide catalysts. Platin Met Rev. 2004;48:105–15.

    Article  CAS  Google Scholar 

  38. DeLuca L, Galfetti L, Severini F. Combustion of composite solid propellants with nanosized aluminium, Combust Explos. Shock Waves. 2005;41:680–92.

    Google Scholar 

  39. Van Devener B, Anderson SL. Breakdown and combustion of JP-10 fuel catalyzed by nanoparticulate CeO2 and Fe2O3. Energy Fuels. 2006;20:1886–94.

    Article  CAS  Google Scholar 

  40. May WR, Hirs EA. Catalyst for improving the combustion efficiency of petroleum fuels in diesel engines. In: 11th diesel engine emissions reduction conference, 2005;pp. 1–16.

  41. Fayyazbakhsh A, Pirouzfar V. Comprehensive overview on diesel additives to reduce emissions, enhance fuel properties and improve engine performance. Renew Sustain Energy Rev. 2017;74:891–901.

    Article  CAS  Google Scholar 

  42. Neri G, Bonaccorsi L, Donato A, Milone C, Musolino MG, Visco AM. Catalytic combustion of diesel soot over metal oxide catalysts. Appl Catal B. 1997;11:217–31.

    Article  CAS  Google Scholar 

  43. Tyagi H, Phelan PE, Prasher R, Peck R, Lee T, Pacheco JR, Arentzen P. Increased hot-plate ignition probability for nanoparticle-laden diesel fuel. Nano Lett. 2008;8:1410–6.

    Article  CAS  PubMed  Google Scholar 

  44. Basha JS, Anand R. Applications of nanoparticle/nanofluid in compression ignition engines–a case study. Int J Appl Eng Res. 2010;5:697–708.

    Google Scholar 

  45. Sadhik Basha J, Anand R. Effects of nanoparticle additive in the water-diesel emulsion fuel on the performance, emission and combustion characteristics of a diesel engine. Int J Vehic Des. 2012;59:164–81.

    Article  Google Scholar 

  46. Khan H, Kareemullah M, Ravi H, Rehman KF, Kumar RH, Afzal A, Soudagar MEM, Fayaz H. Combined effect of synthesized waste milk scum oil methyl ester and ethanol fuel blend on the diesel engine characteristics. J Inst Eng (India) Ser C. 2020;101:947–62.

    Article  Google Scholar 

  47. Mujtaba M, Masjuki H, Kalam M, Noor F, Farooq M, Ong HC, Gul M, Soudagar MEM, Bashir S, Rizwanul Fattah I. Effect of additivized biodiesel blends on diesel engine performance, emission, tribological characteristics, and lubricant tribology. Energies. 2020;13:3375.

    Article  CAS  Google Scholar 

  48. Razzaq L, Imran S, Anwar Z, Farooq M, Abbas MM, Mehmood Khan H, Asif T, Amjad M, Soudagar MEM, Shaukat N. Maximising yield and engine efficiency using optimised waste cooking oil biodiesel. Energies. 2020;13:5941.

    Article  CAS  Google Scholar 

  49. Venu H, Raju VD, Lingesan S, Soudagar MEM. Influence of Al2Onano additives in ternary fuel (diesel-biodiesel-ethanol) blends operated in a single cylinder diesel engine: Performance. Combust Emission Charact Energy. 2021;215:1191.

    Google Scholar 

  50. Fayaz H, Mujtaba M, Soudagar MEM, Razzaq L, Nawaz S, Nawaz MA, Farooq M, Afzal A, Ahmed W, Khan TY. Collective effect of ternary nano fuel blends on the diesel engine performance and emissions characteristics. Fuel. 2021;293:1220.

    Article  CAS  Google Scholar 

  51. El-Seesy AI, Hassan H, Ibraheem L, He Z, Soudagar MEM. Combustion, emission, and phase stability features of a diesel engine fueled by Jatropha/ethanol blends and n-butanol as co-solvent. Int J Green Energy. 2020;1:1–12.

    Google Scholar 

  52. Sateesh KA, Yaliwal VS, Soudagar MEM, Banapurmath NR, Fayaz H, Safaei MR, Elfasakhany A, El-Seesy AI. Utilization of biodiesel/Al2O3 nanoparticles for combustion behavior enhancement of a diesel engine operated on dual fuel mode. J Therm Anal Calorim. 2021;1:1.

    Google Scholar 

  53. Gurusala NK, Selvan VAM. Effects of alumina nanoparticles in waste chicken fat biodiesel on the operating characteristics of a compression ignition engine. Clean Technol Environ Policy. 2015;17:681–92.

    Article  CAS  Google Scholar 

  54. D’Silva R, Binu K, Bhat T. Performance and Emission characteristics of a CI Engine fuelled with diesel and TiO2 nanoparticles as fuel additive. Mater Today: Proc. 2015;2:3728–35.

    CAS  Google Scholar 

  55. Prabakaran B, Udhoji A. Experimental investigation into effects of addition of zinc oxide on performance, combustion and emission characteristics of diesel-biodiesel-ethanol blends in CI engine. Alex Eng J. 2016;55:3355–62.

    Article  Google Scholar 

  56. Prabu A. Nanoparticles as additive in biodiesel on the working characteristics of a DI diesel engine. Ain Shams Eng J. 2018;9:2343–9.

    Article  Google Scholar 

  57. Kalaimurugan K, Karthikeyan S, Periyasamy M, Mahendran G, Dharmaprabhakaran T. Experimental studies on the influence of copper oxide nanoparticle on biodiesel-diesel fuel blend in CI engine. Energy Sources Part A Recov Util Environ Effects. 2019;1:1–16.

    Google Scholar 

  58. Basha JS. An experimental analysis of a diesel engine using alumina nanoparticles blended diesel fuel. In: SAE Technical Paper;2014.

  59. Basha JS, Anand R. Performance, emission and combustion characteristics of a diesel engine using Carbon Nanotubes blended Jatropha Methyl Ester Emulsions. Alex Eng J. 2014;53:259–73.

    Article  Google Scholar 

  60. Basha JS. Applications of Functionalized Carbon-Based Nanomaterials, in: Chemical Functionalization of Carbon Nanomaterials, CRC Press;2015, pp. 598–613.

  61. Basha JS. Impact of Nanoadditive Blended Biodiesel Fuels in Diesel Engines. In: Nanotechnology for Bioenergy and Biofuel Production, Springer;2017, pp. 325–339.

  62. Basha JS, Al Balushi M. Performance and emission features of a light duty diesel engine generator powered with water-diesel emulsions. Eur J Eng Sci Technol. 2019;2:72–8.

    Google Scholar 

  63. Kulkarni DP, Vajjha RS, Das DK, Oliva D. Application of aluminum oxide nanofluids in diesel electric generator as jacket water coolant. Appl Therm Eng. 2008;28:1774–81.

    Article  CAS  Google Scholar 

  64. Mahdisoozani H, Mohsenizadeh M, Bahiraei M, Kasaeian A, Daneshvar A, Goodarzi M, Safaei MR. Performance enhancement of internal combustion engines through vibration control: state of the art and challenges. Appl Sci. 2019;9:406.

    Article  CAS  Google Scholar 

  65. Huo J, Fu L, Zhao C, He C. Hydrogen generation of ammonia borane hydrolysis catalyzed by Fe22@Co58 core-shell structure. Chin Chem Lett. 2021;1:1.

    Google Scholar 

  66. Goodarzi M, Tlili I, Moria H, Cardoso E, Alkanhal TA, Anqi AE, Safaei MR. Boiling flow of graphene nanoplatelets nano-suspension on a small copper disk. Powder Technol. 2021;377:10–9.

    Article  CAS  Google Scholar 

  67. Marquis F, Chibante L. Improving the heat transfer of nanofluids and nanolubricants with carbon nanotubes. Jom. 2005;57:32–43.

    Article  CAS  Google Scholar 

  68. Khalife E, Tabatabaei M, Demirbas A, Aghbashlo M. Impacts of additives on performance and emission characteristics of diesel engines during steady state operation. Prog Energy Combust Sci. 2017;59:32–78.

    Article  Google Scholar 

  69. Fell B, Janowiak S, Kazanis A, Martinez J. High efficiency radiator design for advanced coolant (2007).

  70. Vadasz P, Vadasz JJ, Govender S. Heat transfer enhancement in nanofluid suspensions. In: ASME International Mechanical Engineering Congress and Exposition, Vol. 4711;2004, pp. 61–65.

  71. Prasher R, Phelan PE, Bhattacharya P. Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluid). Nano Lett. 2006;6:1529–34.

    Article  CAS  PubMed  Google Scholar 

  72. Namburu PK, Kulkarni DP, Misra D, Das DK. Viscosity of copper oxide nanoparticles dispersed in ethylene glycol and water mixture. Exp Thermal Fluid Sci. 2007;32:397–402.

    Article  CAS  Google Scholar 

  73. Jung H, Kittelson DB, Zachariah MR. The influence of a cerium additive on ultrafine diesel particle emissions and kinetics of oxidation. Combust Flame. 2005;142:276–88.

    Article  CAS  Google Scholar 

  74. Sadhik Basha J, Anand R. Role of nanoadditive blended biodiesel emulsion fuel on the working characteristics of a diesel engine. J Renew Sustain Energy. 2011;3:023106.

    Article  CAS  Google Scholar 

  75. Basha JS. Impact of Carbon Nanotubes and Di-Ethyl Ether as additives with biodiesel emulsion fuels in a diesel engine–An experimental investigation. J Energy Inst. 2018;91:289–303.

    Article  CAS  Google Scholar 

  76. Kao M-J, Ting C-C, Lin B-F, Tsung T-T. Aqueous aluminum nanofluid combustion in diesel fuel. J Test Eval. 2008;36:186–90.

    Google Scholar 

  77. Basha JS, Anand R. The influence of nano additive blended biodiesel fuels on the working characteristics of a diesel engine. J Braz Soc Mech Sci Eng. 2013;35:257–64.

    Article  Google Scholar 

  78. Abu-Zaid M. An experimental study of the evaporation characteristics of emulsified liquid droplets. Heat Mass Transf. 2004;40:737–41.

    CAS  Google Scholar 

  79. Soudagar MEM, Mujtaba M, Safaei MR, Afzal A, Ahmed W, Banapurmath N, Hossain N, Bashir S, Badruddin IA, Goodarzi M. Effect of Sr@ ZnO nanoparticles and Ricinus communis biodiesel-diesel fuel blends on modified CRDI diesel engine characteristics. Energy. 2021;215:1194.

    Article  CAS  Google Scholar 

  80. Soudagar MEM, Nik-Ghazali N-N, Kalam MA, Badruddin I, Banapurmath N, Akram N. The effect of nano-additives in diesel-biodiesel fuel blends: A comprehensive review on stability, engine performance and emission characteristics. Energy Convers Manag. 2018;178:146–77.

    Article  CAS  Google Scholar 

  81. Basha JS, Anand R. An experimental study in a CI engine using nanoadditive blended water–diesel emulsion fuel. Int J Green Energy. 2011;8:332–48.

    Article  CAS  Google Scholar 

  82. Basha JS. Impact of Carbon Nanotubes and Di-Ethyl Ether as additives with biodiesel emulsion fuels in a diesel engine–An experimental investigation. J Energy Inst. 2016;1:1.

    Google Scholar 

  83. Basha JS, Anand R. Recent technologies for enhancing performance and reducing emissions in diesel engines. Eng Sci Ref. 2020.

  84. F. Barry, Efficiency trials for oxonica nano fuel additive, Envirox, Oxonica, (2008).

  85. Sabourin JL, Dabbs DM, Yetter RA, Dryer FL, Aksay IA. Functionalized graphene sheet colloids for enhanced fuel/propellant combustion. ACS Nano. 2009;3:3945–54.

    Article  CAS  PubMed  Google Scholar 

  86. Roos JW, Richardson D, Claydon DJ. Diesel fuel additives containing cerium or manganese and detergents. In: Google Patents, 2008.

  87. Scattergood R. Cerium oxide nanoparticles as fuel additives. In: Google Patents, 2006.

  88. Wickham DT, Cook R, De Voss S, Engel JR, Nabity J. Soluble nano-catalysts for high performance fuels. J Russ Laser Res. 2006;27:552–61.

    Article  CAS  Google Scholar 

  89. Selvan VAM, Anand R, Udayakumar M. Effects of cerium oxide nanoparticle addition in diesel and diesel-biodiesel-ethanol blends on the performance and emission characteristics of a CI engine. J Eng Appl Sci. 2009;4:1819–6608.

    Google Scholar 

  90. Sajith V, Sobhan C, Peterson G. Experimental investigations on the effects of cerium oxide nanoparticle fuel additives on biodiesel. Adv Mech Eng. 2010;2:5807.

    Article  CAS  Google Scholar 

  91. Aneggi E, Llorca J, de Leitenburg C, Dolcetti G, Trovarelli A. Soot combustion over silver-supported catalysts. Appl Catal B. 2009;91:489–98.

    Article  CAS  Google Scholar 

  92. Amaral SR, de Souza Oliveira CM, Gannam GA. Diesel Engine Emission Reduction Applying Cerium Nanometric and Cerium Oxide in Piston Hard Anodized. In: SAE Technical Paper, 2008.

  93. Ağbulut Ü. Understanding the role of nanoparticle size on energy, exergy, thermoeconomic, exergoeconomic, and sustainability analyses of an IC engine: a thermodynamic approach. Fuel Process Technol. 2022;225:1060.

    Article  CAS  Google Scholar 

  94. Sajeevan AC, Sajith V. Diesel engine emission reduction using catalytic nanoparticles: an experimental investigation. J Eng. 2013;1:1.

    Google Scholar 

  95. Ağbulut Ü, Karagöz M, Sarıdemir S, Öztürk A. Impact of various metal-oxide based nanoparticles and biodiesel blends on the combustion, performance, emission, vibration and noise characteristics of a CI engine. Fuel. 2020;270:117521.

    Article  CAS  Google Scholar 

  96. Rajak U, Ağbulut Ü, Veza I, Dasore A, Sarıdemir S, Verma TN. Numerical and experimental investigation of a CI engine behaviours supported by zinc oxide nanomaterial along with diesel fuel. Energy. 2021;1:122424.

    Google Scholar 

  97. Basha JS, Anand R. An experimental investigation in a diesel engine using carbon nanotubes blended water–diesel emulsion fuel. Proc Inst Mech Eng Part A: J Power Energy. 2011;225:279–88.

    Article  CAS  Google Scholar 

  98. Moy D, Ma J, Hoch R, Leacock J, Willey J, Chishti A, Ribeiro F, Yank J, Johnson G, Matson D. New Nanoscale Catalysts Based on Molybdenum and Tungsten Carbides and Oxycarbides. In: Hyperion Catalysis International (US);2002.

  99. Alenezi RA, Norkhizan A, Mamat R, Najafi G, Mazlan M. Investigating the contribution of carbon nanotubes and diesel-biodiesel blends to emission and combustion characteristics of diesel engine. Fuel. 2021;285:119046.

    Article  CAS  Google Scholar 

  100. Wu Q, Xie X, Wang Y, Roskilly T. Effect of carbon coated aluminum nanoparticles as additive to biodiesel-diesel blends on performance and emission characteristics of diesel engine. Appl Energy. 2018;221:597–604.

    Article  CAS  Google Scholar 

  101. Manigandan S, Gunasekar P, Nithya S, Devipriya J. Effects of nanoadditives on emission characteristics of engine fuelled with biodiesel. Energy Sources Part A: Recov Util Environ Effects. 2020;42:1–9.

    Article  CAS  Google Scholar 

  102. Saxena V, Kumar N, Saxena VK. A comprehensive review on combustion and stability aspects of metal nanoparticles and its additive effect on diesel and biodiesel fuelled CI engine. Renew Sustain Energy Rev. 2017;70:563–88.

    Article  CAS  Google Scholar 

  103. Kumar S, Dinesha P, Bran I. Influence of nanoparticles on the performance and emission characteristics of a biodiesel fuelled engine: An experimental analysis. Energy. 2017;140:98–105.

    Article  CAS  Google Scholar 

  104. Devarajan Y, Nagappan B, Subbiah G. A comprehensive study on emission and performance characteristics of a diesel engine fueled with nanoparticle-blended biodiesel. Environ Sci Pollut Res. 2019;26:10662–72.

    Article  CAS  Google Scholar 

  105. Fayad MA, Dhahad HA. Effects of adding aluminum oxide nanoparticles to butanol-diesel blends on performance, particulate matter, and emission characteristics of diesel engine. Fuel. 2021;286:119363.

    Article  CAS  Google Scholar 

  106. Raju VD, Venu H, Subramani L, Kishore P, Prasanna P, Kumar DV. An experimental assessment of prospective oxygenated additives on the diverse characteristics of diesel engine powered with waste tamarind biodiesel. Energy. 2020;1:117821.

    Article  CAS  Google Scholar 

  107. Venu H, Subramani L, Raju VD. Emission reduction in a DI diesel engine using exhaust gas recirculation (EGR) of palm biodiesel blended with TiO2 nano additives. Renewable Energy. 2019;140:245–63.

    Article  CAS  Google Scholar 

  108. Aalam CS, Saravanan C, Kannan M. Experimental investigations on a CRDI system assisted diesel engine fuelled with aluminium oxide nanoparticles blended biodiesel. Alex Eng J. 2015;54:351–8.

    Article  Google Scholar 

  109. Raju VD, Reddy SR, Venu H, Subramani L, Soudagar MEM. Effect of nanoparticles in bio-oil on the performance, combustion and emission characteristics of a diesel engine. Liquid Biofuels: Fundam Charact Appl. 2021;1:613–37.

    Article  CAS  Google Scholar 

  110. Vigneswaran R, Balasubramanian D, Sastha BS. Performance, emission and combustion characteristics of unmodified diesel engine with titanium dioxide (TiO2) nano particle along with water-in-diesel emulsion fuel. Fuel. 2021;285:119115.

    Article  CAS  Google Scholar 

  111. Mathias B, Karthikeya S, Toufeeq M, Meti V. A Study on Performance and Emission Characteristics of Ci Engine using Nanoparticles (ZnO, Al2O3 and Graphene) Blended with Diesel-DWS Biodiesel-Ethanol Blends, International Journal of Pollution and Noise. Control. 2019;5:7–13.

    Google Scholar 

  112. Soudagar MEM, Banapurmath NR, Afzal A, Hossain N, Abbas MM, Haniffa MACM, Naik B, Ahmed W, Nizamuddin S, Mubarak NM. Study of diesel engine characteristics by adding nanosized zinc oxide and diethyl ether additives in Mahua biodiesel–diesel fuel blend. Sci Rep. 2020;10:15326.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Basha JS, Anand R. Effects of alumina nanoparticles blended jatropha biodiesel fuel on working characteristics of a diesel engine. Int J of Ind Engg & Tech. 2011;2011:53–62.

    Google Scholar 

  114. Sadhik Basha J, Anand R. Effects of nanoparticle-blended water? biodiesel emulsion fuel on working characteristics of a diesel engine. Int J Glob Warm. 2010;2:330–46.

    Article  Google Scholar 

  115. Farfaletti A, Astorga C, Martini G, Manfredi U, Mueller A, Rey M, De Santi G, Krasenbrink A, Larsen BR. Effect of water/fuel emulsions and a cerium-based combustion improver additive on HD and LD diesel exhaust emissions. Environ Sci Technol. 2005;39:6792–9.

    Article  CAS  PubMed  Google Scholar 

  116. Prabu A. Nanoparticles as additive in biodiesel on the working characteristics of a DI diesel engine. Ain Shams Eng J (2017).

  117. J.S. Basha, Preparation of water-biodiesel emulsion fuels with CNT & Alumina nano-additives and their impact on the diesel engine operation, in, SAE Technical Paper, 2015.

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University, Saudi Arabia for funding this work through Research Group Program under Grant Number R.G.P 2/105/41.  The authors are deeply indebted to acknowledge and express heartfelt thanks to the IMCO management for all the help tendered in a shorter period of time to carry out the above report.

Author information

Authors and Affiliations

Authors

Contributions

J.S.B. and M.A.B.: Writing- Original Draft, Review & Editing, Conceptualization, Investigation, and Formal Analysis. M.E.M.S., T.M.Y.K., and M.A.M.: Conceptualization, Writing-Original Draft, Formal analysis, Review & Editing. M.R.S.: Project administration, Supervision. N.H.: Conceptualization, Review and Editing. T.M.Y.K. and A.E.: Conceptualization, Funding, and Support.

Corresponding author

Correspondence to Mohammad Reza Safaei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basha, J.S., Al Balushi, M., Soudagar, M.E.M. et al. Applications of Nano-Additives in Internal Combustion Engines: A Critical Review. J Therm Anal Calorim 147, 9383–9403 (2022). https://doi.org/10.1007/s10973-022-11199-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11199-6

Keywords

Navigation