Skip to main content
Log in

Thermal behavior and kinetics of the reaction between liquid sodium and calcium hydroxide

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermally-induced reaction between liquid sodium (Na(l)) and calcium hydroxide (Ca(OH)2(s)) was investigated as one of the possible component reactions when Na(l) was reacted with concrete materials under a postulated severe accidental condition in a sodium-cooled fast reactor. The Na(l)–Ca(OH)2(s) reaction was traced using a differential scanning calorimetry (DSC), placed in an argon substituted glove box. An exothermic DSC peak appeared in the temperature range of 550–700 K was attributed to the Na(l)–Ca(OH)2(s) reaction to form a mixed phase comprised of calcium oxide (CaO(s)), sodium hydroxide (NaOH(s,l)) and sodium oxide (Na2O(s)). Based on morphological analyses of reacting system, a physico-geometrical reaction model was proposed: the reaction initiates at the initial contact area of Na(l) and Ca(OH)2(s) and proceeds by the movement of the reaction interface toward Ca(OH)2(s), where the product layer is composed of CaO(s), NaOH(s,l), and Na2O(s). Therefore, the Na(l) diffusion through the product layer is the necessary process to promote the reaction between Na(l) and Ca(OH)2(s), for which a significant influence of the melting of NaOH(s) that has on the overall kinetic behavior is expected. This melting occurs midway through the Na(l)–Ca(OH)2(s) reaction at 594 K. The overall Na(l)–Ca(OH)2(s) reaction was analyzed kinetically using the DSC curves recorded at different heating rates. A partially overlapping two-step reaction feature was evidenced, in which the primary and secondary reaction steps were characterized by the apparent activation energy values of 128 and 138 kJ mol−1, respectively. The multistep feature of the Na(l)–Ca(OH)2(s) reaction could result from the melting of NaOH(s) in the product layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kikuchi S, Koga N, Seino H, Ohno S. Kinetic study on liquid sodium–silica reaction for safety assessment of sodium-cooled fast reactor. J Therm Anal Calorim. 2015;121(1):45–55. https://doi.org/10.1007/s10973-014-4387-x.

    Article  CAS  Google Scholar 

  2. Kikuchi S, Koga N, Seino H, Ohno S. Experimental study and kinetic analysis on sodium oxide–silica reaction. J Nucl Sci Technol. 2016;53(5):682–91. https://doi.org/10.1080/00223131.2015.1121843.

    Article  CAS  Google Scholar 

  3. Kikuchi S, Koga N. Thermal behavior of sodium hydroxide–structural concrete composition of sodium-cooled fast reactor. J Therm Anal Calorim. 2018;131(1):301–8. https://doi.org/10.1007/s10973-017-6236-1.

    Article  CAS  Google Scholar 

  4. Kikuchi S, Kurihara A, Ohshima H, Hashimoto K. Theoretical study of sodium-water surface reaction mechanism. J Power Energy Syst. 2012;6(2):76–86. https://doi.org/10.1299/jpes.6.76.

    Article  Google Scholar 

  5. Kikuchi S, Seino H, Kurihara A, Ohshima H. Kinetic study of sodium-water surface reaction by differential thermal analysis. J Power Energy Syst. 2013;7(2):79–93. https://doi.org/10.1299/jpes.7.79.

    Article  Google Scholar 

  6. Fritzke H.W, Shultheiss G. F. Experimental investigation of sodium-concrete interation and mitigation protective layers. In: Proceedings of the International Conference on structural mechanics in reactor technology; 1983 Aug. 22–26; Chicago (USA) H3/3. p. 135–42

  7. Koga N, Kikuchi S. Thermal behavior of perlite concrete used in a sodium-cooled fast reactor: multistep reaction kinetics and melting for safety assessment. J Therm Anal Calorim. 2019;138(2):983–96. https://doi.org/10.1007/s10973-019-08351-0.

    Article  CAS  Google Scholar 

  8. Kikuchi S, Koga N, Yamazaki A. Comparative study on the thermal behavior of structural concretes of sodium-cooled fast reactor: siliceous concretes. J Therm Anal Calorim. 2019;137(4):1211–24. https://doi.org/10.1007/s10973-019-08045-7.

    Article  CAS  Google Scholar 

  9. Yokokawa H, Yamauchi S, Matsumoto T. The thermodynamic database MALT. Calphad. 1999;23(3–4):357–64. https://doi.org/10.1016/s0364-5916(00)00006-7.

    Article  CAS  Google Scholar 

  10. Yokokawa H, Yamauchi S, Matsumoto T. Thermodynamic database MALT for Windows with gem and CHD. Calphad. 2002;26(2):155–66. https://doi.org/10.1016/s0364-5916(02)00032-9.

    Article  CAS  Google Scholar 

  11. Sánchez-Jiménez PE, Perejón A, Criado JM, Diánez MJ, Pérez-Maqueda LA. Kinetic model for thermal dehydrochlorination of poly(vinyl chloride). Polymer. 2010;51(17):3998–4007. https://doi.org/10.1016/j.polymer.2010.06.020.

    Article  CAS  Google Scholar 

  12. Koga N, Goshi Y, Yamada S, Pérez-Maqueda LA. Kinetic approach to partially overlapped thermal decomposition processes. J Therm Anal Calorim. 2013;111(2):1463–74. https://doi.org/10.1007/s10973-012-2500-6.

    Article  CAS  Google Scholar 

  13. Koga N. Physico-geometric approach to the kinetics of overlapping solid-state reactions. In: Vyazovkin S, Koga N, Schick C, editors. Handbook of thermal analysis and calorimetry: recent advances, techniques and application. 2nd ed. Amsterdam: Elsevier; 2018. p. 213–51.

    Google Scholar 

  14. Vyazovkin S, Burnham AK, Favergeon L, Koga N, Moukhina E, Pérez-Maqueda LA, et al. ICTAC Kinetics Committee recommendations for analysis of multi-step kinetics. Thermochim Acta. 2020;689:178597. https://doi.org/10.1016/j.tca.2020.178597.

    Article  CAS  Google Scholar 

  15. Cordfunke EHP, Konings RJM. Thermochemical data for reactor materials and fission products. Amsterdam: North-Holland; 1990.

    Google Scholar 

  16. Koga N, Kodani S. Thermally induced carbonation of Ca(OH)2 in a CO2 atmosphere: kinetic simulation of overlapping mass-loss and mass-gain processes in a solid-gas system. Phys Chem Chem Phys. 2018;20(41):26173–89. https://doi.org/10.1039/c8cp05701j.

    Article  CAS  PubMed  Google Scholar 

  17. Koga N, Favergeon L, Kodani S. Impact of atmospheric water vapor on the thermal decomposition of calcium hydroxide: a universal kinetic approach to a physico-geometrical consecutive reaction in solid-gas systems under different partial pressures of product gas. Phys Chem Chem Phys. 2019;21(22):11615–32. https://doi.org/10.1039/c9cp01327j.

    Article  CAS  PubMed  Google Scholar 

  18. Bale CW, Bélisle E, Chartrand P, Decterov SA, Eriksson G, Hack K, et al. FactSage thermochemical software and databases — recent developments. Calphad. 2009;33(2):295–311. https://doi.org/10.1016/j.calphad.2008.09.009.

    Article  CAS  Google Scholar 

  19. Chase MW, Curnutt JL, Hu AT, Prophet H, Syverud AN, Walker LC. JANAF thermochemical tables, 1974 supplement. J Phys Chem Ref Data. 1974;3(2):311–480. https://doi.org/10.1063/1.3253143.

    Article  CAS  Google Scholar 

  20. Friedman HL. kinetics of thermal degradation of char-forming plastics from thermogravimetry, application to a phenolic plastic. J Polym Sci Part C. 1964;6:183–95. https://doi.org/10.1002/polc.5070060121.

    Article  Google Scholar 

  21. Perejon A, Sanchez-Jimenez PE, Criado JM, Perez-Maqueda LA. Kinetic analysis of complex solid-state reactions. A new deconvolution procedure. J Phys Chem B. 2011;115(8):1780–91. https://doi.org/10.1021/jp110895z.

    Article  CAS  PubMed  Google Scholar 

  22. Svoboda R, Málek J. Applicability of Fraser-Suzuki function in kinetic analysis of complex crystallization processes. J Therm Anal Calorim. 2013;111(2):1045–56. https://doi.org/10.1007/s10973-012-2445-9.

    Article  CAS  Google Scholar 

  23. Šesták J, Berggren G. Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures. Thermochim Acta. 1971;3:1–12. https://doi.org/10.1016/0040-6031(71)85051-7.

    Article  Google Scholar 

  24. Šesták J. Diagnostic limits of phenomenological kinetic models introducing the accommodation function. J Therm Anal. 1990;36(6):1997–2007. https://doi.org/10.1007/bf01914116.

    Article  Google Scholar 

  25. Šesták J. Rationale and fallacy of thermoanalytical kinetic patterns. J Therm Anal Calorim. 2011;110(1):5–16. https://doi.org/10.1007/s10973-011-2089-1.

    Article  CAS  Google Scholar 

  26. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38(11):1881–6. https://doi.org/10.1246/bcsj.38.1881.

    Article  CAS  Google Scholar 

  27. Ozawa T. Applicability of Friedman plot. J Therm Anal. 1986;31(3):547–51. https://doi.org/10.1007/Bf01914230.

    Article  CAS  Google Scholar 

  28. Ozawa T. Non-isothermal kinetics and generalized time. Thermochim Acta. 1986;100(1):109–18. https://doi.org/10.1016/0040-6031(86)87053-8.

    Article  CAS  Google Scholar 

  29. Koga N. Kinetic analysis of thermoanalytical data by extrapolating to infinite temperature. Thermochim Acta. 1995;258:145–59. https://doi.org/10.1016/0040-6031(95)02249-2.

    Article  CAS  Google Scholar 

  30. Gotor FJ, Criado JM, Málek J, Koga N. Kinetic analysis of solid-state reactions: the universality of master plots for analyzing isothermal and nonisothermal experiments. J Phys Chem A. 2000;104(46):10777–82. https://doi.org/10.1021/jp0022205.

    Article  CAS  Google Scholar 

  31. Criado JM, Pérez-Maqueda LA, Gotor FJ, Málek J, Koga N. A unified theory for the kinetic analysis of solid state reactions under any thermal pathway. J Therm Anal Calorim. 2003;72(3):901–6. https://doi.org/10.1023/a:1025078501323.

    Article  CAS  Google Scholar 

  32. Koga N. Ozawa’s kinetic method for analyzing thermoanalytical curves. J Therm Anal Calorim. 2013;113(3):1527–41. https://doi.org/10.1007/s10973-012-2882-5.

    Article  CAS  Google Scholar 

  33. Málek J, Koga N, Pérez-Maqueda LA, Criado JM. The Ozawa’s generalized time concept and YZ-master plots as a convenient tool for kinetic analysis of complex processes. J Therm Anal Calorim. 2013;113(3):1437–46. https://doi.org/10.1007/s10973-013-2939-0.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a study of “Research and Development of Multi-Level and Multi-Scenario Plant Simulation Systems for Innovative Sodium-Cooled Fast Reactor” entrusted to “Japan Atomic Energy Agency (JAEA)” by the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT, 160102). The authors are deeply grateful to Mr. T. Yonemichi (Tokokikai Co.) for his assistance in many thermal analysis experiments and data processing. We wish to acknowledge valuable discussions and comments on the phenomenology of SCR with JAEA experts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin Kikuchi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 894 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kikuchi, S., Koga, N. Thermal behavior and kinetics of the reaction between liquid sodium and calcium hydroxide. J Therm Anal Calorim 147, 4635–4643 (2022). https://doi.org/10.1007/s10973-021-10856-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10856-6

Keywords

Navigation