Skip to main content
Log in

Kinetic study on liquid sodium–silica reaction for safety assessment of sodium-cooled fast reactor

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, the kinetic behavior of the sodium (Na)–silica (SiO2) reaction was investigated for an assessment method of reactivity/stability of siliceous concrete against the sodium–concrete reaction (SCR) by postulating a severe accidental condition in the sodium-cooled fast reactor (SFR). The reaction behavior was tracked using a differential scanning calorimetry (DSC) equipped with a videoscope for viewing the changes in the sample during the reaction. The reaction was characterized as a partially overlapping multistep process controlled by physico-geometrical reaction scheme. The kinetic behavior in view of the change in the temperature at the maximum reaction rate with heating rate was analyzed using the simplified Kissinger method and the approximated Ozawa method. Further by separating the kinetic data for the overall reaction into five component reaction stages, the kinetic information for the second and third reaction stages was extracted. By comparing the kinetic results, it was revealed that the kinetic results determined from the kinetic data at the maximum reaction rate can be interpreted as is for the major reaction stage (the third reaction stage) controlled by an autocatalytic reaction. In addition, the second reaction stage was characterized as a possible premonitory process for the major reaction stage. Through the comprehensive interpretation of the kinetic results, significance of the kinetic analysis for the Na–SiO2 reaction using DSC for the reactivity/stability evaluation against SCR and for the safety assessment of SFR is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Casselman C. Consequences of interaction between sodium and concrete. Nucl Eng Des. 1982;68(2):207–12. doi:10.1016/0029-5493(82)90032-2.

    Article  CAS  Google Scholar 

  2. Chasanov MG, Staahl GE. High-temperature sodium–concrete interactions. J Nucl Mat. 1977;66(1–2):217–20. doi:10.1016/0022-3115(77)90154-4.

    Article  CAS  Google Scholar 

  3. Suo-Anttila AJ. SLAM—A sodium-limestone concrete ablation model. Nuclear Regulatory Commission Contractor Report. 1983; NUREG/CR-3379 (SAND83-7114 R7).

  4. Das SK, Sharma AK, Parida FC, Kasinathan N. Experimental study on thermo-chemical phenomena during interaction of limestone concrete with liquid sodium under inert atmosphere. Const Build Mat. 2009;23(11):3375–81. doi:10.1016/j.conbuildmat.2009.06.021.

    Article  Google Scholar 

  5. Mohammed Haneefa K, Santhanam M, Parida FC. Review of concrete performance at elevated temperature and hot sodium exposure applications in nuclear industry. Nucl Eng Des. 2013;258:76–88. doi:10.1016/j.nucengdes.2013.01.018.

    Article  CAS  Google Scholar 

  6. Unemoto T, Hashimoto Y, Takasaki S, Arakawa T, Yokoo J, Sasagawa Y. Experimental studies on sodium–concrete reaction (II). PNC Technical Report. 1983; PNC-TJ270 83-01.

  7. Miyahara S, Haga K, Himeno Y. Sodium aerosol release rate and nonvolatile fission-product retention factor during a sodium–concrete reaction. Nucl Technol. 1992;97(2):212–26.

    CAS  Google Scholar 

  8. Chawla TC, Pedersen DR. A review of modeling concepts for sodium concrete reactions and a model for liquid-sodium transport to the unreacted concrete surface. Nucl Eng Des. 1985;88(1):85–91. doi:10.1016/0029-5493(85)90047-0.

    Article  CAS  Google Scholar 

  9. Zhang B, Zhu J, Shan JXW. Simulation of chemical kinetics in sodium–concrete interactions. Nucl Sci Tech. 2006;17(1):53–60. doi:10.1016/s1001-8042(06)60012-2.

    Article  CAS  Google Scholar 

  10. Bae JH, Shin MS, Min BH, Kim SM. Experimental study on sodium–concrete reactions. J Korean Nucl Soc. 1998;30(6):568–80.

    CAS  Google Scholar 

  11. Glasser LSD, Kataoka N. The chemistry of alkali-aggregate reaction. Cement Concr Res. 1981;11(1):1–9.

    Article  Google Scholar 

  12. Davies G, Oberholster RE. Alkali-silica reaction-products and their development. Cement Concr Res. 1988;18(4):621–35. doi:10.1016/0008-8846(88)90055-5.

    Article  CAS  Google Scholar 

  13. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29(11):1702–6. doi:10.1021/ac60131a045.

    Article  CAS  Google Scholar 

  14. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38(11):1881–6. doi:10.1246/bcsj.38.1881.

    Article  CAS  Google Scholar 

  15. Koga N, Goshi Y, Yamada S, Pérez-Maqueda LA. Kinetic approach to partially overlapped thermal decomposition processes. J Therm Anal Calorim. 2013;111(2):1463–74. doi:10.1007/s10973-012-2500-6.

    Article  CAS  Google Scholar 

  16. Kikuchi S, Seino H, Kurihara A, Ohshima H. Kinetic study of sodium–water surface reaction by differential thermal analysis. J Pow Energy Syst. 2013;7(2):79–93. doi:10.1299/jpes.7.79.

    Article  Google Scholar 

  17. Chase MWJ. JANAF thermochemical tables third edition part II, Cr–Zr. Amer Inst Phys.; 1986.

  18. Bale CW, Bélisle E, Chartrand P, Decterov SA, Eriksson G, Hack K, et al. FactSage thermochemical software and databases—recent developments. Calphad. 2009;33(2):295–311. doi:10.1016/j.calphad.2008.09.009.

    Article  CAS  Google Scholar 

  19. Ukai S, Yoshida E, Enokida Y, Nihei I. Quantitative characterization on dissolution and deposition behavior of SUS316 stainless steel cladding constituents under flowing sodium in fast reactor. International conference on materials for nuclear reactor core applications; 1987; London (UK): British Nuclear Energy Society.

  20. Bin Jenn S, Wu PCS, Chiotti P. Thermodynamic properties of the double oxides of Na2O with the oxides of Cr, Ni and Fe. J Nucl Mat. 1977;67(1–2):13–23. doi:10.1016/0022-3115(77)90157-x.

    Article  Google Scholar 

  21. Koga N, Šesták J, Simon P. Some fundamental and historical aspects of phenomenological kinetics in the solid state studied by thermal analysis. In: Šesták J, Simon P, editors. Thermal analysis of micro, nano- and non-crystalline materials. Springer: Berlin; 2013. p. 1–28.

  22. Koga N. Ozawa’s kinetic method for analyzing thermoanalytical curves: history and theoretical fundamentals. J Therm Anal Calorim. 2013;. doi:10.1007/s10973-012-2882-5.

    Google Scholar 

  23. Westrich HR, Stockman HW, Suo-Anttila A. Laboratory-scale sodium-carbonate aggregate concrete interactions. Nuclear Regulatory Commission Contractor Report. 1983;NUREG/CR-3401: SAND83-1502 R7.

  24. Doyle CD. Kinetic analysis of thermogravimetric data. J Appl Polym Sci. 1961;5:285–92.

    Article  CAS  Google Scholar 

  25. Koga N, Šesták J. Further aspects of the kinetic compensation effect. J Therm Anal. 1991;37(5):1103–8. doi:10.1007/bf01932804.

    Article  Google Scholar 

  26. Koga N, Šesták J. Kinetic compensation effect as a mathematical consequence of the exponential rate-constant. Thermochim Acta. 1991;182(2):201–8. doi:10.1016/0040-6031(91)80005-4.

    Article  CAS  Google Scholar 

  27. Koga N. A review of the mutual dependence of Arrhenius parameters evaluated by the thermoanalytical study of solid-state reactions: the kinetic compensation effect. Thermochim Acta. 1994;244(1):1–20. doi:10.1016/0040-6031(94)80202-5.

    Article  CAS  Google Scholar 

  28. Galwey AK, Mortimer M. Compensation effects and compensation defects in kinetic and mechanistic interpretations of heterogeneous chemical reactions. Int J Chem Kinet. 2006;38(7):464–73. doi:10.1002/kin.20176.

    Article  CAS  Google Scholar 

  29. Koga N, Tanaka H. A physico-geometric approach to the kinetics of solid-state reactions as exemplified by the thermal dehydration and decomposition of inorganic solids. Thermochim Acta. 2002;388(1–2):41–61. doi:10.1016/s0040-6031(02)00051-5.

    Article  CAS  Google Scholar 

  30. Vyazovkin S, Chrissafis K, Di Lorenzo ML, Koga N, Pijolat M, Roduit B, et al. ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim Acta. 2014;590:1–23. doi:10.1016/j.tca.2014.05.036.

    Article  CAS  Google Scholar 

  31. Friedman HL. Kinetics of thermal degradation of cha-forming plastics from thermogravimetry, application to a phenolic plastic. J Polym Sci C. 1964;6:183–95.

    Article  Google Scholar 

  32. Sánchez-Jiménez PE, Perejón A, Criado JM, Diánez MJ, Pérez-Maqueda LA. Kinetic model for thermal dehydrochlorination of poly(vinyl chloride). Polymer. 2010;51(17):3998–4007. doi:10.1016/j.polymer.2010.06.020.

    Article  Google Scholar 

  33. Yoshikawa M, Yamada S, Koga N. Phenomenological interpretation of the multistep thermal decomposition of silver carbonate to form silver metal. J Phys Chem C. 2014;118(15):8059–70. doi:10.1021/jp501407p.

    Article  CAS  Google Scholar 

  34. Noda Y, Koga N. Phenomenological kinetics of the carbonation reaction of lithium hydroxide monohydrate: Role of surface product layer and possible existence of a liquid phase. J Phys Chem C. 2014;118(10):5424–36. doi:10.1021/jp500322p.

    Article  CAS  Google Scholar 

  35. Šesták J, Berggren G. Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures. Thermochim Acta. 1971;3:1–12. doi:10.1016/0040-6031(71)85051-7.

    Article  Google Scholar 

  36. Šesták J. Diagnostic limits of phenomenological kinetic models introducing the accommodation function. J Therm Anal. 1990;36(6):1997–2007. doi:10.1007/bf01914116.

    Article  Google Scholar 

  37. Šesták J. Rationale and fallacy of thermoanalytical kinetic patterns. J Therm Anal Calorim. 2011;110(1):5–16. doi:10.1007/s10973-011-2089-1.

    Google Scholar 

  38. Perez-Maqueda LA, Criado JM, Sánchez-Jiménez PE. Combined kinetic analysis of solid-state reactions: a powerful tool for the simultaneous determination of kinetic parameters and the kinetic model without previous assumptions on the reaction mechanism. J Phys Chem A. 2006;110(45):12456–62. doi:10.1021/jp064792g.

  39. Koga N, Suzuki Y, Tatsuoka T. Thermal dehydration of magnesium acetate tetrahydrate: formation and in situ crystallization of anhydrous glass. J Phys Chem B. 2012;116(49):14477–86. doi:10.1021/jp3052517.

    Article  CAS  Google Scholar 

  40. Málek J, Criado JM. Empirical kinetic models in thermal analysis. Thermochim Acta. 1992;203:25–30. doi:10.1016/0040-6031(92)85182-u.

    Article  Google Scholar 

  41. Wada T, Koga N. Kinetics and mechanism of the thermal decomposition of sodium percarbonate: role of the surface product layer. J Phys Chem A. 2013;117(9):1880–9. doi:10.1021/jp3123924.

    Article  CAS  Google Scholar 

  42. Kitabayashi S, Koga N. Physico-geometrical mechanism and overall kinetics of thermally induced oxidative decomposition of tin(ii) oxalate in air: formation process of microstructural tin(iv) oxide. J Phys Chem C. 2014;118(31):17847–61. doi:10.1021/jp505937k.

    Article  CAS  Google Scholar 

  43. Svoboda R, Cicmanec P, Málek J. Kissinger equation versus glass transition phenomenology. J Therm Anal Calorim. 2013;114(1):285–93. doi:10.1007/s10973-012-2892-3.

  44. Koga N, Šesták J, Málek J. Distortion of the Arrhenius parameters by the inappropriate kinetic-model function. Thermochim Acta. 1991;188(2):333–6. doi:10.1016/0040-6031(91)87091-A.

Download references

Acknowledgements

The authors are deeply grateful to Mr. T. Yonemichi (Tokokikai Co.) for his assistance in many thermal analysis experiments and data processing. We wish to acknowledge valuable discussions and comments on the phenomenology of SCR with JAEA experts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin Kikuchi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kikuchi, S., Koga, N., Seino, H. et al. Kinetic study on liquid sodium–silica reaction for safety assessment of sodium-cooled fast reactor. J Therm Anal Calorim 121, 45–55 (2015). https://doi.org/10.1007/s10973-014-4387-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-4387-x

Keywords

Navigation