Skip to main content
Log in

Effect of silica nano-additive on flash point, pour point, rheological and tribological properties of lubricating engine oil: an experimental study

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, the rheological behavior and tribological properties of a nano-lubricant containing SiO2 nanoparticles in SAE40 engine oil are experimentally investigated. Nano-lubricant has been prepared with two-step method using an ultrasonic homogenizer. The rheological behavior of nano-lubricant checked out in all studied temperatures (ranging from 15˚C to 65˚C) and different solid volume fractions (ranging from 0 to 1%) and it shows non-Newtonian behavior (pseudoplastic). Also, an accurate correlation is presented for the prediction of nano-lubricant’s viscosity based on experimental data. A pin-on-disk tribometer was performed to investigate the tribological behavior of nano-lubricant. Results revealed that in φ = 0.1%, the wear rate and friction coefficient have been decreased by 50% and 18.46%, respectively, compared with the base oil. In addition, the nano-lubricant with optimum concentration and base oil was tested in the operational condition of diesel engines at the same condition and the abrasive elements of these engine oils were analyzed. Other important factors including pour point and flash point were also determined which showed that the addition of SiO2 nanoparticles to the base oil in φ = 0.1% will cause a 3.8% improvement in flash point compared with the base oil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

R:

Regression coefficient

Wr:

Wear rate (\({{\mathrm{mm}}^{3}}{\mathrm{N}^{-1} \mathrm{m}^{-3}}\))

\(\Delta \mathrm{m}\) :

Mass reduction

L:

Distance (m)

F:

Exerted load (N)

φ:

Solid volume fraction

τ:

Shear stress (Pa)

\(\dot{\gamma }\) :

Shear rate (\({s}^{-1}\))

ρ:

Density (\({\mathrm{g}} \, {{\mathrm{mm}}^{-3}}\))

ANOVA:

Analysis of variance

SAE:

Society of automotive engineers

SEM:

Scanning electron microscopy

XRD:

X-ray diffraction

References

  1. Lee C-G, Hwang Y-J, Choi Y-M, Lee J-K, Choi C, Oh J-M. A study on the tribological characteristics of graphite nano lubricants. Int J Precis Eng Manuf. 2009;10(1):85–90.

    Article  Google Scholar 

  2. Sarafraz M, Arya A, Nikkhah V, Hormozi F. Thermal performance and viscosity of biologically produced silver/coconut oil nanofluids. Chem Biochem Eng Q. 2016;30(4):489–500.

    Article  CAS  Google Scholar 

  3. Salari E, Peyghambarzadeh M, Sarafraz M, Hormozi F. Boiling heat transfer of alumina nano-fluids: role of nanoparticle deposition on the boiling heat transfer coefficient. 2016.

  4. Izadi M, Mohebbi R, Sajjadi H, Amiri Delouei A. LTNE modeling of Magneto-Ferro natural convection inside a porous enclosure exposed to nonuniform magnetic field. Phys A: Stat Mecha Appl. 2019;535:122394.

    Article  CAS  Google Scholar 

  5. Yuan M, Mohebbi R, Rashidi MM, Yang Zh. MHD forced convection of MWCNT–Fe 3 O 4/water hybrid nanofluid in a partially heated τ-shaped channel using LBM. J Therm Anal Calorim. 2019;136(4):1723–35.

    Article  Google Scholar 

  6. Delouei AA, Sajjadi H, Mohebbi R, Izadi M. Experimental study on inlet turbulent flow under ultrasonic vibration: Pressure drop and heat transfer enhancement. Ultrason Sonochem. 2019;51:151–9.

    Article  Google Scholar 

  7. Hemmat-Esfe M, Esfandeh S. Investigation of rheological behavior of hybrid oil based nanolubricant-coolant applied in car engines and cooling equipments. Applied Thermal Engineering. 2017.

  8. Alirezaie A, Saedodin S, Hemmat-Esfe M, Rostamian SH. Investigation of rheological behavior of MWCNT (COOH-functionalized)/MgO-Engine oil hybrid nanofluids and modelling the results with artificial neural networks. J Mol Liq. 2017;241:173–81.

    Article  CAS  Google Scholar 

  9. Hemmat-Esfe M, Zabihi F, Rostamian H, Esfandeh S. Experimental investigation and model development of the non-Newtonian behavior of CuO-MWCNT-10w40 hybrid nano-lubricant for lubrication purposes. J Mol Liq. 2018;249:677–87.

    Article  CAS  Google Scholar 

  10. Hemmat-Esfe M, Tatar A, Ahangar MRH, Rostamian H. A comparison of performance of several artificial intelligence methods for predicting the dynamic viscosity of TiO2/SAE 50 nano-lubricant. Phys E. 2018;96:85–93.

    Article  CAS  Google Scholar 

  11. Izadi F, Ranjbarzadeh R, Kalbasi R, Afrand M. A new experimental correlation for non-Newtonian behavior of COOH-DWCNTs/antifreeze nanofluid. Phys E. 2018;98:83–9.

    Article  CAS  Google Scholar 

  12. Kharabati, S., Saedodin S., and Rostamian S. H. 2021 "Experimental investigation of thermal and rheological behavior of silica/soybean oil nano lubricant in low-temperature performance of internal combustion engine." Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 1–15.

  13. Aghaei A, Khorasanizadeh H, Sheikhzadeh GA. Measurement of the dynamic viscosity of hybrid engine oil-Cuo-MWCNT nanofluid, development of a practical viscosity correlation and utilizing the artificial neural network. Heat Mass Transf. 2018;54(1):151–61.

    Article  CAS  Google Scholar 

  14. Saedodin S, Kashefi MH, Bahrami Z. Experimental study on the rheological behavior of nanolubricant-containing MCM-41 nanoparticles with viscosity measurement. J Therm Anal Calorim. 2019;137(5):1499–511.

    Article  CAS  Google Scholar 

  15. Sanukrishna S, Prakash MJ. Experimental studies on thermal and rheological behaviour of TiO2-PAG nanolubricant for refrigeration system. Int J Refrig. 2018;86:356–72.

    Article  CAS  Google Scholar 

  16. Rostamian S.H, Saedodin S, Asghari SA, Salarian AH. 2020 Effect of C60-SiO2 hybrid nanoparticles on thermophysical and tribological properties of a multigrade engine oil: an experimental study. Journal of Thermal Analysis and Calorimetry, 1–13.

  17. Parvar, M., Saedodin S, Rostamian SH. Experimental study on the thermal conductivity and viscosity of transformer oil-based nanofluid containing ZnO nanoparticles. Journal of Heat and Mass Transfer Research, 2020.

  18. Mohebbi R, Amiri Delouei A, Jamali A, Izadi M, Mohamad AA. Pore-scale simulation of non-Newtonian power-law fluid flow and forced convection in partially porous media: thermal lattice Boltzmann method. Phys A. 2019;525:642–56.

    Article  CAS  Google Scholar 

  19. Krishnakumar T, Viswanath S, Varghese SM. Experimental studies on thermal and rheological properties of Al2O3–ethylene glycol nanofluid. Int J Refrig. 2018;89:122–30.

    Article  CAS  Google Scholar 

  20. Hemmat-Esfe M, Arani AAA, Madadi MR, Alirezaie A. A study on rheological characteristics of hybrid nano-lubricants containing MWCNT-TiO2 nanoparticles. J Mol Liq. 2018;260:229–36.

    Article  CAS  Google Scholar 

  21. Sepyani K, Afrand M, Hemmat-Esfe M. An experimental evaluation of the effect of ZnO nanoparticles on the rheological behavior of engine oil. J Mol Liq. 2017;236:198–204.

    Article  CAS  Google Scholar 

  22. Nadooshan AA, Hemmat-Esfe M, Afrand M. Prediction of rheological behavior of SiO 2-MWCNTs/10W40 hybrid nanolubricant by designing neural network. J Therm Anal Calorim. 2018;131(3):2741–8.

    Article  Google Scholar 

  23. Soltani O, Akbari M. Effects of temperature and particles concentration on the dynamic viscosity of MgO-MWCNT/ethylene glycol hybrid nanofluid: experimental study. Phys E. 2016;84:564–70.

    Article  CAS  Google Scholar 

  24. Hemmat-Esfe M, Afrand M, Gharehkhani S, Rostamian H, Toghraie D, Dahari M. An experimental study on viscosity of alumina-engine oil: effects of temperature and nanoparticles concentration. Int Commun Heat Mass Transfer. 2016;76:202–8.

    Article  CAS  Google Scholar 

  25. Vakili-Nezhaad G, Dorany A. Investigation of the effect of multiwalled carbon nanotubes on the viscosity index of lube oil cuts. Chem Eng Commun. 2009;196(9):997–1007.

    Article  CAS  Google Scholar 

  26. Afrand M, Najafabadi KN, Sina N, Safaei MR, Kherbeet AS, Wongwises S, et al. Prediction of dynamic viscosity of a hybrid nano-lubricant by an optimal artificial neural network. Int Commun Heat Mass Transfer. 2016;76:209–14.

    Article  CAS  Google Scholar 

  27. Chen L, Xie H, Yu W, Li Y. Rheological behaviors of nanofluids containing multi-walled carbon nanotube. J Dispersion Sci Technol. 2011;32(4):550–4.

    Article  CAS  Google Scholar 

  28. Hemmat-Esfe M, Afrand M, Rostamian SH, Toghraie D. Examination of rheological behavior of MWCNTs/ZnO-SAE40 hybrid nano-lubricants under various temperatures and solid volume fractions. Exp Thermal Fluid Sci. 2017;80:384–90.

    Article  CAS  Google Scholar 

  29. Shababi K, Firouzi M, Fakhar A 2018 An experimental study on rheological behavior of SAE50 engine oil. Journal of Thermal Analysis and Calorimetry 1–10.

  30. Asadi A, Asadi M, Rezaei M, Siahmargoi M, Asadi F. The effect of temperature and solid concentration on dynamic viscosity of MWCNT/MgO (20–80)–SAE50 hybrid nano-lubricant and proposing a new correlation: an experimental study. Int Commun Heat Mass Transfer. 2016;78:48–53.

    Article  CAS  Google Scholar 

  31. Asadi M, Asadi A. Dynamic viscosity of MWCNT/ZnO–engine oil hybrid nanofluid: an experimental investigation and new correlation in different temperatures and solid concentrations. Int Commun Heat Mass Transfer. 2016;76:41–5.

    Article  CAS  Google Scholar 

  32. Esfe MH, Bahiraei M, Hajmohammad MH, Afrand M. Rheological characteristics of MgO/oil nanolubricants: Experimental study and neural network modeling. Int Commun Heat Mass Transfer. 2017;86:245–52.

    Article  Google Scholar 

  33. Dardan E, Afrand M, Isfahani AM. Effect of suspending hybrid nano-additives on rheological behavior of engine oil and pumping power. Appl Therm Eng. 2016;109:524–34.

    Article  CAS  Google Scholar 

  34. Zhou LH, Wei XC, Ma ZJ, Mei B. Anti-friction performance of FeS nanoparticle synthesized by biological method. Appl Surf Sci. 2017;407:21–8.

    Article  CAS  Google Scholar 

  35. Shahnazar S, Bagheri S, Hamid SBA. Enhancing lubricant properties by nanoparticle additives. Int J Hydro Energy. 2016;41(4):3153–70.

    Article  CAS  Google Scholar 

  36. Wan Q, Jin Y, Sun P, Ding Y. Tribological behaviour of a lubricant oil containing boron nitride nanoparticles. Procedia Eng. 2015;102:1038–45.

    Article  CAS  Google Scholar 

  37. Aldana PU, Dassenoy F, Vacher B, Le Mogne T, Thiebaut B. WS2 nanoparticles anti-wear and friction reducing properties on rough surfaces in the presence of ZDDP additive. Tribol Int. 2016;102:213–21.

    Article  CAS  Google Scholar 

  38. Sgroi M, Asti M, Gili F, Deorsola FA, Bensaid S, Fino D, et al. Engine bench and road testing of an engine oil containing MoS2 particles as nano-additive for friction reduction. Tribol Int. 2017;105:317–25.

    Article  CAS  Google Scholar 

  39. Wu H, Zhao J, Xia W, Cheng X, He A, Yun JH et al. 2017 A study of the tribological behaviour of TiO2 nano-additive water-based lubricants. Tribology International

  40. Rodrigues A, Österle W, Gradt T, Azevedo C. Impact of copper nanoparticles on tribofilm formation determined by pin-on-disc tests with powder supply: Addition of artificial third body consisting of Fe3O4. Cu Graph Tribol Int. 2017;110:103–12.

    Article  CAS  Google Scholar 

  41. Ingole S, Charanpahari A, Kakade A, Umare S, Bhatt D, Menghani J. Tribological behavior of nano TiO2 as an additive in base oil. Wear. 2013;301(1–2):776–85.

    Article  CAS  Google Scholar 

  42. Mosleh M, Shirvani KA. In-situ nanopolishing by nanolubricants for enhanced elastohydrodynamic lubrication. Wear. 2013;301(1–2):137–43.

    Article  CAS  Google Scholar 

  43. Demas NG, Erck RA, Lorenzo-Martin C, Ajayi OO, Fenske GR. Experimental evaluation of oxide nanoparticles as friction and wear improvement additives in motor oil. Journal of Nanomaterials. 2017

  44. Viesca J, Battez AH, González R, Chou R, Cabello J. Antiwear properties of carbon-coated copper nanoparticles used as an additive to a polyalphaolefin. Tribol Int. 2011;44(7–8):829–33.

    Article  CAS  Google Scholar 

  45. Chinas-Castillo F, Spikes H. Mechanism of action of colloidal solid dispersions. J Tribol. 2003;125(3):552–7.

    Article  CAS  Google Scholar 

  46. Hu ZS, Lai R, Lou F, Wang L, Chen Z, Chen G, et al. Preparation and tribological properties of nanometer magnesium borate as lubricating oil additive. Wear. 2002;252(5–6):370–4.

    Article  CAS  Google Scholar 

  47. Liu G, Li X, Qin B, Xing D, Guo Y, Fan R. Investigation of the mending effect and mechanism of copper nano-particles on a tribologically stressed surface. Tribol Lett. 2004;17(4):961–6.

    Article  CAS  Google Scholar 

  48. Zhou J, Yang J, Zhang Z, Liu W, Xue Q. Study on the structure and tribological properties of surface-modified Cu nanoparticles. Mater Res Bull. 1999;34(9):1361–7.

    Article  CAS  Google Scholar 

  49. Rastogi R, Yadav M, Bhattacharya A. Application of molybdenum complexes of 1-aryl-2, 5-dithiohydrazodicarbonamides as extreme pressure lubricant additives. Wear. 2002;252(9–10):686–92.

    Article  CAS  Google Scholar 

  50. Ginzburg B, Shibaev L, Kireenko O, Shepelevskii A, Baidakova M, Sitnikova A. Antiwear effect of fullerene C 6 0 additives to lubricating oils. Russ J Appl Chem. 2002;75(8):1330–5.

    Article  CAS  Google Scholar 

  51. Xiaodong Z, Xun F, Huaqiang S, Zhengshui H. Lubricating properties of Cyanex 302-modified MoS2 microspheres in base oil 500SN. Lubr Sci. 2007;19(1):71–9.

    Article  Google Scholar 

  52. Lee J, Cho S, Hwang Y, Lee C, Kim SH. Enhancement of lubrication properties of nano-oil by controlling the amount of fullerene nanoparticle additives. Tribol Lett. 2007;28(2):203–8.

    Article  CAS  Google Scholar 

  53. Nasiri-Khuzani G, Asoodar M, Rahnama M, Sharifnasab H. 2012 Evaluation of engine parts wear using nano lubrication oil in agricultural tractors. Global Journal of Science Frontier Research 12(8-D).

  54. Jatti VS, Singh T. 2015 Copper oxide nano-particles as friction-reduction and anti-wear additives in lubricating oil. Journal of Mechanical Science and Technology

  55. Chen S, Liu W. Oleic acid capped PbS nanoparticles: synthesis, characterization and tribological properties. Mater Chem Phys. 2006;98(1):183–9.

    Article  CAS  Google Scholar 

  56. Jiao D, Zheng S, Wang Y, Guan R, Cao B. The tribology properties of alumina/silica composite nanoparticles as lubricant additives. Appl Surf Sci. 2011;257(13):5720–5.

    Article  CAS  Google Scholar 

  57. Koshy CP, Rajendrakumar PK, Thottackkad MV. Evaluation of the tribological and thermo-physical properties of coconut oil added with MoS2 nanoparticles at elevated temperatures. Wear. 2015;330:288–308.

    Article  Google Scholar 

  58. Ran X, Yu X, Zou Q. Effect of particle concentration on tribological properties of ZnO nanofluids. Tribol Trans. 2017;60(1):154–8.

    Article  CAS  Google Scholar 

  59. Ahmadi H, Rashidi A, Nouralishahi A, Mohtasebi SS. Preparation and thermal properties of oil-based nanofluid from multi-walled carbon nanotubes and engine oil as nano-lubricant. Int Commun Heat Mass Transfer. 2013;46:142–7.

    Article  Google Scholar 

  60. Ahmadi H, Rashidi A, Mohtasebi SS, Alaei M. Experimental evaluation of engine oil properties containing copper oxide nanoparticles as a nanoadditive. Int J Ind Chem. 2013;4(1):28.

    Article  Google Scholar 

  61. Einstein A. Eine neue bestimmung der moleküldimensionen. Ann Phys. 1906;324(2):289–306.

    Article  Google Scholar 

  62. Saitô N. Concentration dependence of the viscosity of high polymer solutions I. J Phys Soc Japan. 1950;5(1):4–8.

    Article  Google Scholar 

  63. Brinkman H. The viscosity of concentrated suspensions and solutions. J Chem Phys. 1952;20(4):571–571.

    Article  CAS  Google Scholar 

  64. Batchelor G. The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J Fluid Mech. 1977;83(1):97–117.

    Article  Google Scholar 

  65. Wang X-Q, Mujumdar AS. Heat transfer characteristics of nanofluids: a review. Int J Therm Sci. 2007;46(1):1–19.

    Article  Google Scholar 

  66. Chen H, Ding Y, Tan C. Rheological behaviour of nanofluids. New J Phys. 2007;9(10):367.

    Article  Google Scholar 

  67. Holman, J.P. Experimental methods for engineers. 2001.

Download references

Acknowledgements

Special thanks to the Science and Technology Park of Semnan University, which provided the conditions for this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seyfolah Saedodin or Seyed Hadi Rostamian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kashefi, M.H., Saedodin, S. & Rostamian, S.H. Effect of silica nano-additive on flash point, pour point, rheological and tribological properties of lubricating engine oil: an experimental study. J Therm Anal Calorim 147, 4073–4086 (2022). https://doi.org/10.1007/s10973-021-10812-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10812-4

Keywords

Navigation