Skip to main content
Log in

Effect of 1,2,3-triazolium-functionalized PEG-b-PCL block copolymer on crystallization behavior of poly(L‑lactic acid) as nucleation agent and mobility promoter

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The effect of 1,2,3-triazolium-functionalized PCL-b-PEG block copolymer (PCL-b-PEG(IL)) on crystallization behavior and kinetics of PLA was systematically studied by DSC, POM and XRD. A small amount of micelle of aggregated PCL-b-PEG(IL) containing ionic clusters and a large number of disaggregated PCL-b-PEG(IL) can significantly improve the chain segment mobility of PLA. The glass transition temperature and cold crystallization temperature of PLA gradually decreased with the increase in PCL-b-PEG(IL) or PCL-b-PEG content. Compared with PCL-b-PEG, PCL-b-PEG(IL) decreases the Tg of PLA more obviously because of the strong plasticizing effect of PCL-b-PEG(IL). More importantly, the isothermal crystallization kinetics results manifested that the synergistic effect of heterogeneous nucleation agent of ionic clusters of PCL-b-PEG(IL) and chain mobility promoter of PEG chain segment can enhance the crystallization ability of PLA at all crystallization temperature. The 5 mass% PCL-b-PEG(IL) can induce high amount of stable α-form crystal of PLA after annealing treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1

Similar content being viewed by others

References

  1. Nagarajan V, Mohanty AK, Misra M. Perspective on polylactic acid (PLA) based sustainable materials for durable applications: focus on toughness and heat resistance. ACS Sustain Chem Eng. 2016;4:2899–916.

    Article  CAS  Google Scholar 

  2. Lim LT, Auras R, Rubino M. Processing technologies for poly(lactic acid). Prog Polym Sci. 2008;33:820–52.

    Article  CAS  Google Scholar 

  3. Rasal RM, Janorkar AV, Hirt DE. Poly(lactic acid) modifications. Prog Polym Sci. 2010;35:338–56.

    Article  CAS  Google Scholar 

  4. Forouharshad M, Gardella L, Furfaro D, Galimberti M, Monticelli O. A low-environmental-impact approach for novel biocomposites based on PLLA/PCL blends and high surface area graphite. Eur Polym J. 2015;70:28–36.

    Article  CAS  Google Scholar 

  5. Chavalitpanya K, Phattanarudee S. Poly(lactic acid)/polycaprolactone blends compatibilized with block copolymer. Energy Procedia. 2013;34:542–8.

    Article  CAS  Google Scholar 

  6. Li Y, Han C, Zhang X, Dong Q, Dong L. Effects of molten poly(d, l-lactide) on nonisothermal crystallization in stereocomplex of poly(l-lactide) with poly(d-lactide). Thermochim Acta. 2013;573:193–9.

    Article  CAS  Google Scholar 

  7. Papageorgiou GZ, Achilias DS, Nanaki S, Beslikas T, Bikiaris D. PLA nanocomposites: effect of filler type on non-isothermal crystallization. Thermochim Acta. 2010;511:129–39.

    Article  CAS  Google Scholar 

  8. Li C, Dou Q. Non-isothermal crystallization kinetics and spherulitic morphology of nucleated poly(lactic acid): effect of dilithium hexahydrophthalate as a novel nucleating agent. Thermochim Acta. 2014;594:31–8.

    Article  CAS  Google Scholar 

  9. Liu H, Song W, Chen F, Guo L, Zhang J. Interaction of microstructure and interfacial adhesion on impact performance of polylactide (pla) ternary blends. Macromolecules. 2011;44:1513–22.

    Article  CAS  Google Scholar 

  10. Ljungberg N, Wesslén B. The effects of plasticizers on the dynamic mechanical and thermal properties of poly(lactic acid). J Appl Polym Sci. 2002;86:1227–34.

    Article  CAS  Google Scholar 

  11. Lu J, Yan F, Texter J. Advanced applications of ionic liquids in polymer science. Prog Polym Sci. 2009;34:431–48.

    Article  CAS  Google Scholar 

  12. Zhang D, Yin J, He F, Ge N, Wu Z, Ding Y. Synthesis of poly(ethylene glycol) functionalized star-shaped tricationic imidazolium based ionic liquid. Chin J Polym Sci. 2014;33:245–55.

    Article  Google Scholar 

  13. Yuan J, Mecerreyes D, Antonietti M. Poly(ionic liquid)s: an update. Prog Polym Sci. 2013;38:1009–36.

    Article  CAS  Google Scholar 

  14. Ding Y, Wang P, Wang Z, Chen L, Xu H, Chen S. Magnesium hydroxide modified by 1-n-tetradecyl-3-carboxymethyl imidazolium chloride and its effects on the properties of LLDPE. Polym Eng Sci. 2011;51:1519–24.

    Article  CAS  Google Scholar 

  15. Dias AMA, Marceneiro S, Braga MEM, Coelho JFJ, Ferreira AGM, Simões PN, et al. Phosphonium-based ionic liquids as modifiers for biomedical grade poly(vinyl chloride). Acta Biomater. 2012;8:1366–79.

    Article  CAS  Google Scholar 

  16. Gui H, Li Y, Chen S, Xu P, Zheng B, Ding Y. Effects of biodegradable imidazolium-based ionic liquid with ester group on the structure and properties of PLLA. Macromol Res. 2014;22:583–91.

    Article  CAS  Google Scholar 

  17. Park K, Ha JU, Xanthos M. Ionic liquids as plasticizers/lubricants for polylactic acid. Polym Eng Sci. 2010;50:1105–10.

    Article  CAS  Google Scholar 

  18. Chen BK, Wu TY, Chang YM, Chen AF. Ductile polylactic acid prepared with ionic liquids. Chem Eng J. 2013;215:886–93.

    Article  Google Scholar 

  19. Lai WC, Liau WB, Lin TT. The effect of end groups of PEG on the crystallization behaviors of binary crystalline polymer blends PEG/PLLA. Polymer. 2004;45:3073–80.

    Article  CAS  Google Scholar 

  20. Li Y, Fang H, Zhang D, Bahader A, Zhen B, Xu P, et al. Synergetic effects of PEG arm and ionic liquid moiety contained in the tri-arm star-shaped oligomer on the crystallization behaviors of poly(lactic acid). J Therm Anal Calorim. 2016;125:849–60.

    Article  CAS  Google Scholar 

  21. Tesfaye M, Patwa R, Kommadath R, Kotecha P, Katiyar V. Silk nanocrystals stabilized melt extruded poly (lactic acid) nanocomposite films: effect of recycling on thermal degradation kinetics and optimization studies. Thermochim Acta. 2016;643:41–52.

    Article  CAS  Google Scholar 

  22. Xu P, Luo X, Zhou Y, Yang Y, Ding Y. Enhanced cold crystallization and dielectric polarization of PLA composites induced by PMPEGMA-IL and graphene. Thermochim Acta. 2017;657:156–62.

    Article  CAS  Google Scholar 

  23. Wang P, Zhang D, Zhou Y, Li Y, Fang H, Wei H, et al. A well-defined biodegradable 1,2,3-triazolium-functionalized PEG-b-PCL block copolymer: facile synthesis and its compatibilization for PLA/PCL blends. Ionics. 2018;24:787–95.

    Article  CAS  Google Scholar 

  24. Yasuniwa M, Tsubakihara S, Iura K, Ono Y, Dan Y, Takahashi K. Crystallization behavior of poly(l-lactic acid). Polymer. 2006;47(21):7554–63.

    Article  CAS  Google Scholar 

  25. Nofar M, Zhu W, Park CB, Randall J. Crystallization kinetics of linear and long-chain-branched polylactide. Ind Eng Chem Res. 2011;50:13789–98.

    Article  CAS  Google Scholar 

  26. Fang H, Jiang F, Wu Q, Ding Y, Wang Z. Supertough polylactide materials prepared through in situ reactive blending with PEG-based diacrylate monomer. ACS Appl Mater Interfaces. 2014;6:13552–63.

    Article  CAS  Google Scholar 

  27. Yang J, Liang Y, Luo J, Zhao C, Han CC. Multilength scale studies of the confined crystallization in poly(l-lactide)-block-poly(ethylene glycol) copolymer. Macromolecules. 2012;45:4254–61.

    Article  CAS  Google Scholar 

  28. Wu D, Zhang Y, Zhang M, Zhou W. Phase behavior and its viscoelastic response of polylactide/poly(ε-caprolactone) blend. Eur Polym J. 2008;44:2171–83.

    Article  CAS  Google Scholar 

  29. Lorenzo AT, Arnal ML, Albuerne J, Müller AJ. DSC isothermal polymer crystallization kinetics measurements and the use of the Avrami equation to fit the data: guidelines to avoid common problems. Polym Test. 2007;26:222–31.

    Article  CAS  Google Scholar 

  30. Saeidlou S, Huneault MA, Li H, Park CB. Poly(lactic acid) crystallization. Prog Polym Sci. 2012;37:1657–77.

    Article  CAS  Google Scholar 

  31. Mascia L, Haworth B, Vignali A, Megna R, Acierno D, Russo P. Thermal transitions and solidification kinetics of poly(lactic acid) and blends with epoxidized natural rubber. Thermochim Acta. 2016;633:82–90.

    Article  CAS  Google Scholar 

  32. Cai Y, Yan S, Yin J, Fan Y, Chen X. Crystallization behavior of biodegradable poly(L-lactic acid) filled with a powerful nucleating agent: N, N′-bis(benzoyl) suberic acid dihydrazide. J Appl Polym Sci. 2011;121:1408–16.

    Article  CAS  Google Scholar 

  33. Li H, Huneault MA. Effect of nucleation and plasticization on the crystallization of poly(lactic acid). Polymer. 2007;48:6855–66.

    Article  CAS  Google Scholar 

  34. Dong W, He M, Wang H, Ren F, Zhang J, Zhao X, et al. PLLA/ABS blends compatibilized by reactive comb polymers: double Tg depression and significantly improved toughness. ACS Sustain Chem Eng. 2015;3:2542–50.

    Article  CAS  Google Scholar 

  35. Weng M, Qiu Z. Unusual fractional crystallization behavior of novel crystalline/crystalline polymer blends of poly(ethylene suberate) and poly(ethylene oxide) with similar melting points. Macromolecules. 2014;47:8351–8.

    Article  CAS  Google Scholar 

  36. Shao J, Sun J, Bian X, Cui Y, Zhou Y, Li G, et al. Modified PLA homochiral crystallites facilitated by the confinement of PLA stereocomplexes. Macromolecules. 2013;46:6963–71.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (No. 51903002), Natural Science Foundation of Anhui Education Department (No. KJ2019A0774, KJ2019JD18, KJ2019ZD51), Major science and technology projects of Anhui Province (201903a05020027), Anhui Jianzhu University PhD Startup Fund (2019QDZ22, 2018QD59) and University Collaborative Innovation Project of Anhui province (GXXT-2019-017), WuHu Key Technology Major R&D Projects (2020yf14) and Research Fund for Postdoctoral Researchers in Anhui Province (2020B413).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Fan, B., Zhou, Y. et al. Effect of 1,2,3-triazolium-functionalized PEG-b-PCL block copolymer on crystallization behavior of poly(L‑lactic acid) as nucleation agent and mobility promoter. J Therm Anal Calorim 147, 3207–3216 (2022). https://doi.org/10.1007/s10973-021-10694-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10694-6

Keywords

Navigation