Skip to main content
Log in

The Crystallization and Melting Behaviors of PDLA-b-PBS-b-PDLA Triblock Copolymers

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

In this study, the poly(D-lactide)-block-poly(butylene succinate)-block-poly(D-lactide) (PDLA-b-PBS-b-PDLA) triblock copolymers with a fixed length of PBS and various lengths of PDLA are synthesized, and the crystallization behaviors of the PDLA and PBS blocks are investigated. Although both the crystallization behaviors of PBS and PDLA blocks depend on composition, they exhibit different variations. For the PDLA block, its crystallization behaviors are mainly influenced by temperature and block length. The crystallization signals of PDLA block appear in the B-D 2–2 specimen, and these signals get enhanced with PDLA block length. The crystallization rates tend to decrease with increasing PDLA block lendth during crystallizing at 90 and 100 °C. Crystallizing at higher temperature, the crystallization rates increase at first and then decrease with block length. The crystallization rates decrease as elevating the crystallization temperature. The melting temperatures of PDLA blocks increase with block lengths and crystallization temperatures. For the PBS block, its crystallization behaviors are mainly controlled by the nucleation and confinement from PDLA block. The crystallization and melting enthalpies as well as the crystallization and melting temperatures of PBS block reduce as a longer PDLA block has been copolymerized, while the crystallization rates of the PBS block exhibit unique component dependence, and the highest rate is observed in the B-D 2–2 specimen. The Avrami exponent of PBS crystallites is reduced as a longer PDLA block is incorporated or the sample is crystallized at higher temperature. This investigation provides a convenient route to tune the crystallization behavior of PBS and PLA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Madhavan Nampoothiri, K.; Nair, N. R.; John, R. P. An overview of the recent developments in polylactide (PLA) research. Bioresource Technol.2010, 101, 8493–8501.

    CAS  Google Scholar 

  2. Inkinen, S.; Hakkarainen, M.; Albertsson, A. C.; Södergård, A. From lactic acid to poly(lactic acid) (PLA): characterization and analysis of PLA and its precursors. Biomacromolecules2011, 12, 523–532.

    CAS  Google Scholar 

  3. Jem, K. J.; van der Pol, J.; de Vos, S. Microbial lactic acid, its polymer poly(lactic acid), and their industrial applications. In Plastics from Bacteria, Ed. by Chen, G. G. Q. Springer Berlin Heidelberg, 2010, Vol. 14, pp. 323–346.

    Google Scholar 

  4. Pang, X.; Zhuang, X.; Tang, Z.; Chen, X. Polylactic acid (PLA): research, development and industrialization. Biotechnol. J.2010, 5, 1125–1136.

    PubMed  CAS  Google Scholar 

  5. Saeidlou, S.; Huneault, M. A.; Li, H.; Park, C. B. Poly(lactic acid) crystallization. Prog. Polym. Sci.2012, 37, 1657–1677.

    CAS  Google Scholar 

  6. Xu, J.; Guo, B. H. Poly(butylene succinate) and its copolymers: research, development and industrialization. Biotechnol. J.2010, 5, 1149–1163.

    PubMed  CAS  Google Scholar 

  7. Gigli, M.; Fabbri, M.; Lotti, N.; Gamberini, R.; Rimini, B.; Munari, A. Poly(butylene succinate)-based polyesters for biomedical applications: a review. Eur. Polym. J.2016, 75, 431–460.

    CAS  Google Scholar 

  8. Deng, Y.; Thomas, N. L. Blending poly(butylene succinate) with poly(lactic acid): ductility and phase inversion effects. Eur. Polym. ULJ.2015, 71, 534–546.

    CAS  Google Scholar 

  9. Wuk, P. J.; Soon, I. S. Phase behavior and morphology in blends of poly(L-lactic acid) and poly(butylene succinate). J. Appl. Polym. Sci.2002, 86, 647–655.

    Google Scholar 

  10. Wu, D.; Yuan, L.; Laredo, E.; Zhang, M.; Zhou, W. Interfacial properties, viscoelasticity, and thermal behaviors of poly(butylene succinate)/polylactide blend. Ind. Eng. Chem. Res.2012, 51, 2290–2298.

    CAS  Google Scholar 

  11. Yokohara, T.; Yamaguchi, M. Structure and properties for biomass-based polyester blends of PLA and PBS. Eur. Polym. J.2008, 44, 677–685.

    CAS  Google Scholar 

  12. Stoyanova, N.; Paneva, D.; Mincheva, R.; Toncheva, A.; Manolova, N.; Dubois, P.; Rashkov, I. Poly(L-lactide) and poly(butylene succinate) immiscible blends: from electrospinning to biologically active materials. Mater. Sci. Eng. C2014, 41, 119–126.

    CAS  Google Scholar 

  13. Olivier, P.; Robert, Q.; Yahia, L.; John, S.; Stuart, M.; Leïla, B.; Philippe, D. Reactive compatibilization of poly(L-lactide)/poly(butylene succinate) blends through polyester maleation: From materials to properties. Polym. Int.2014, 63, 1724–1731.

    Google Scholar 

  14. Chen, G. X.; Kim, H. S.; Kim, E. S.; Yoon, J. S. Compatibilization-like effect of reactive organoclay on the poly(L-lactide)/poly(butylene succinate) blends. Polymer2005, 46, 11829–11836.

    CAS  Google Scholar 

  15. Tadashi, Y.; Kenzo, O.; Masayuki, Y. Effect of the shape of dispersed particles on the thermal and mechanical properties of biomass polymer blends composed of poly(L-lactide) and poly(butylene succinate). J. Appl. Polym. Sci.2010, 117, 2226–2232.

    Google Scholar 

  16. Zhang, X.; Zhang, Y. Reinforcement effect of poly(butylene succinate) (PBS)-grafted cellulose nanocrystal on toughened PBS/polylactic acid blends. Carbohyd. Polym.2016, 140, 374–382.

    CAS  Google Scholar 

  17. Masaki, H.; Tsubasa, O.; Kouji, I.; Hideki, H.; Koji, H.; Hiroyuki, F. Increased impact strength of biodegradable poly(lactic acid)/poly(butylene succinate) blend composites by using isocyanate as a reactive processing agent. J. Appl. Polym. Sci.2007, 106, 1813–1820.

    Google Scholar 

  18. Zhang, B.; Bian, X.; Xiang, S.; Li, G.; Chen, X. Synthesis of PLLA-based block copolymers for improving melt strength and toughness of PLLA by in situ reactive blending. Polym. Degrad. Stab.2017, 136, 58–70.

    CAS  Google Scholar 

  19. Valerio, O.; Misra, M.; Mohanty, A. K. Statistical design of sustainable thermoplastic blends of poly(glycerol succinate-co-maleate) (PGSMA), poly(lactic acid) (PLA) and poly(butylene succinate) (PBS). Polym. Test.2018, 65, 420–428.

    CAS  Google Scholar 

  20. Supthanyakul, R.; Kaabbuathong, N.; Chirachanchai, S. Poly(L-lactide-b-butylene succinate-b-L-lactide) triblock copolymer: a multi-functional additive for PLA/PBS blend with a key performance on film clarity. Polym. Degrad. Stab.2017, 142, 160–168.

    CAS  Google Scholar 

  21. Supthanyakul, R.; Kaabbuathong, N.; Chirachanchai, S. Random poly(butylene succinate-co-lactic acid) as a multi-functional additive for miscibility, toughness, and clarity of PLA/PBS blends. Polymer2016, 105, 1–9.

    CAS  Google Scholar 

  22. Liu, Y.; Shao, J.; Sun, J.; Bian, X.; Chen, Z.; Li, G.; Chen, X. Toughening effect of poly(D-lactide)-b-poly(butylene succinate)-b-poly(D-lactide) copolymers on poly(L-lactic acid) by solution casting method. Mater. Lett.2015, 155, 94–96.

    CAS  Google Scholar 

  23. Kawai, T.; Rahman, N.; Matsuba, G.; Nishida, K.; Kanaya, T.; Nakano, M.; Okamoto, H.; Kawada, J.; Usuki, A.; Honma, N. Crystallization and melting behavior of poly(L-lactic acid). Macromolecules2007, 40, 9463–9469.

    CAS  Google Scholar 

  24. Li, S. Non-isothermal crystallization kinetics of poly(L-lactide). Polym. Int.2010, 59, 1616.

    Google Scholar 

  25. Xiang, S.; Jun, S.; Li, G.; Bian, X. C.; Feng, L. D.; Chen, X. S.; Liu, F. Q.; Huang, S. Y. Effects of molecular weight on the crystallization and melting behaviors of poly(L-lactide). Chinese J. Polym. Sci.2016, 34, 69–76.

    CAS  Google Scholar 

  26. Liu, X. Q.; Li, C. C.; Zhang, D.; Xiao, Y. N. Melting behaviors, crystallization kinetics, and spherulitic morphologies of poly(butylene succinate) and its copolyester modified with rosin maleopimaric acid anhydride. J. Polym. Sci., Part B: Polym. Phys.2006, 44, 900–913.

    CAS  Google Scholar 

  27. Gan, Z.; Abe, H.; Kurokawa, H.; Doi, Y. Solid-state microstructures, thermal properties, and crystallization of biodegradable poly(butylene succinate) (PBS) and its copolyesters. Biomacromolecules2001, 2, 605–613.

    PubMed  CAS  Google Scholar 

  28. Park, J. W.; Kim, D. K.; Im, S. S. Crystallization behaviour of poly(butylene succinate) copolymers. Polym. Int.2002, 51, 239–244.

    CAS  Google Scholar 

  29. Park, S. B.; Hwang, S. Y.; Moon, C. W.; Im, S. S.; Yoo, E. S. Plasticizer effect of novel PBS ionomer in PLA/PBS ionomer blends. Macromol. Res.2010, 18, 463–471.

    CAS  Google Scholar 

  30. Pivsa-Art, W.; Fujii, K.; Nomura, K.; Aso, Y.; Ohara, H.; Yamane, H. Isothermal crystallization kinetics of talc-filled poly(lactic acid) and poly(butylene succinate) blends. J. Polym. Res.2016, 23, 144.

    Google Scholar 

  31. Ba, C.; Yang, J.; Hao, Q.; Liu, X.; Cao, A. Syntheses and physical characterization of new aliphatic triblock poly(L-lactide-b-butylene succinate-b-L-lactide)s bearing soft and hard biodegradable building blocks. Biomacromolecules2003, 4, 1827–1834.

    PubMed  CAS  Google Scholar 

  32. Lan, X.; Li, X.; Liu, Z.; He, Z.; Yang, W.; Yang, M. Composition, morphology and properties of poly(lactic acid) and poly(butylene succinate) copolymer system via coupling reaction. J. Macromol. Sci.2013, 50, 861–870.

    CAS  Google Scholar 

  33. Lin, J.; Yin, L. Z.; Li, Y.; Li, Q. B.; Yang, J.; Yu, J. Y.; Shi, Z.; Fang, Q.; Cao, A. New enantiomeric polylactide-block-poly(butylene succinate)-block-polylactides: syntheses, characterization and in situ self-assembly. Macromol. Biosci.2005, 5, 526–538.

    Google Scholar 

  34. Zeng, J. B.; Li, Y. D.; Zhu, Q. Y.; Yang, K. K.; Wang, X. L.; Wang, Y. Z. A novel biodegradable multiblock poly(ester urethane) containing poly(L-lactic acid) and poly(butylene succinate) blocks. Polymer2009, 50, 1178–1186.

    CAS  Google Scholar 

  35. Müller, A. J.; Balsamo, V.; Arnal, M. L. Nucleation and crystallization in diblock and triblock copolymers. In Block copolymers II, Abetz, V., 1st Ed. Springer Berlin Heidelberg, Berlin, Heidelberg, 2005, pp. 1–63.

    Google Scholar 

  36. Castillo, R. V.; Müller, A. J.; Raquez, J. M.; Dubois, P. Crystallization kinetics and morphology of biodegradable double crystalline PLLA-b-PCL diblock copolymers. Macromolecules2010, 43, 4149–4160.

    CAS  Google Scholar 

  37. Castillo, R. V.; Müller, A. J. Crystallization and morphology of biodegradable or biostable single and double crystalline block copolymers. Prog. Polym. Sci.2009, 34, 516–560.

    CAS  Google Scholar 

  38. Zhou, D.; Shao, J.; Li, G.; Sun, J.; Bian, X.; Chen, X. Crystallization behavior of PEG/PLLA block copolymers: effect of the different architectures and molecular weights. Polymer2015, 62, 70–76.

    CAS  Google Scholar 

  39. Chen, C. H.; Peng, J. S.; Chen, M.; Lu, H. Y.; Tsai, C. J.; Yang, C. S. Synthesis and characterization of poly(butylene succinate) and its copolyesters containing minor amounts of propylene succinate. Colloid Polym. Sci.2010, 288, 731–738.

    CAS  Google Scholar 

  40. Shao, J.; Tang, Z. H.; Sun, J. R.; Li, G.; Chen, X. S. Linear and four-armed poly(L-lactide)-block-poly(D-lactide) copolymers and their stereocomplexation with poly(lactide)s. J. Polym. Sci., Part B: Polym. Phys.2014, 52, 1560–1567.

    CAS  Google Scholar 

  41. Avrami, M. Kinetics of phase change. II. Transformation-time relations for random distribution of nuclei. J. Chem. Phys.1940, 8, 212–224.

    CAS  Google Scholar 

  42. Avrami, M. Kinetics of phase change. I. General theory. J. Chem. Phys.1939, 7, 1103–1112.

    CAS  Google Scholar 

  43. Yin, H. Y.; Wei, X. F.; Bao, R. Y.; Dong, Q. X.; Liu, Z. Y.; Yang, W.; Xie, B. H.; Yang, M. B. High-melting-point crystals of poly(L-lactic acid) (PLLA): the most efficient nucleating agent to enhance the crystallization of PLLA. CrystEngComm2015, 17, 2310–2320.

    CAS  Google Scholar 

  44. Huang, C. I.; Tsai, S. H.; Chen, C. M. Isothermal crystallization behavior of poly(L-lactide) in poly(L-lactide)-block-poly(ethylene glycol) diblock copolymers. J. Polym. Sci., Part B: Polym. Phys.2006, 44, 2438–2448.

    CAS  Google Scholar 

  45. Yang, J.; Zhao, T.; Liu, L.; Zhou, Y.; Li, G.; Zhou, E.; Chen, X. Isothermal crystallization behavior of the poly(L-lactide) block in poly(L-lactide)-poly(ethylene glycol) diblock copolymers: influence of the PEG block as a diluted solvent. Polym. J.2006, 38, 1251–1257.

    CAS  Google Scholar 

  46. Yang, J.; Zhao, T.; Cui, J.; Liu, L.; Zhou, Y.; Li, G.; Zhou, E.; Chen, X. Nonisothermal crystallization behavior of the poly(ethylene glycol) block in poly(L-lactide)-poly(ethylene glycol) diblock copolymers: Effect of the poly(L-lactide) block length. J. Polym. Sci., Part B: Polym. Phys.2006, 44, 3215–3226.

    CAS  Google Scholar 

  47. Hamley, I. W.; Castelletto, V.; Castillo, R. V.; Müller, A. J.; Martin, C. M.; Pollet, E.; Dubois, P. Crystallization in poly(L-lactide)-b-poly(ε-caprolactone) double crystalline diblock copolymers: a study using X-ray scattering, differential scanning calorimetry, and polarized optical microscopy. Macromolecules2005, 38, 463–472.

    CAS  Google Scholar 

  48. Hu, J.; Xin, R.; Hou, C. Y.; Yan, S. K.; Liu, J. C. Direct comparison of crystal nucleation activity of PCL on patterned substrates. Chinese J. Polym. Sci.2019, 37, 693–699.

    CAS  Google Scholar 

  49. Okihara, T.; Tsuji, M.; Kawaguchi, A.; Katayama, K. I.; Tsuji, H.; Hyon, S. H.; Ikada, Y. Crystal structure of stereocomplex of poly(L-lactide) and poly(D-lactide). J. Macromol. Sci. Part B1991, 30, 119–140.

    CAS  Google Scholar 

  50. Ihn, K. J.; Yoo, E. S.; Im, S. S. Structure and morphology of poly(tetramethylene succinate) crystals. Macromolecules1995, 28, 2460–2464.

    CAS  Google Scholar 

  51. Bittiger, H.; Marchessault, R. H.; Niegisch, W. D. Crystal structure of poly-ε-caprolactone. Acta Cryst. B1970, 26, 1923–1927.

    CAS  Google Scholar 

  52. Takahashi, Y.; Tadokoro, H. Structural studies of polyethers, (-(CH2)m-O-)n. X. Crystal structure of poly(ethylene oxide). Macromolecules1973, 6, 672–675.

    CAS  Google Scholar 

  53. Zhang, J. M.; Duan, Y. X.; Sato, H.; Tsuji, H.; Noda, I.; Yan, S.; Ozaki, Y. Crystal modifications and thermal behavior of poly(L-lactic acid) revealed by infrared spectroscopy. Macromolecules2005, 38, 8012–8021.

    CAS  Google Scholar 

  54. Michell, R. M.; Müller, A. J.; Spasova, M.; Dubois, P.; Burattini, S.; Greenland, B. W.; Hamley, I. W.; Hermida-Merino, D.; Cheval, N.; Fahmi, A. Crystallization and stereocomplexation behavior of poly(D- and L-lactide)-b-poly(N,N-dimethylamino-2-ethyl methacrylate) block copolymers. J. Polym. Sci., Part B: Polym. Phys.2011, 49, 1397–1409.

    CAS  Google Scholar 

  55. Sarasua, J. R.; Prud’homme, R. E.; Wisniewski, M.; Le Borgne, A.; Spassky, N. Crystallization and melting behavior of polylactides. Macromolecules1998, 31, 3895–3905.

    CAS  Google Scholar 

  56. Di Lorenzo, M. L. Calorimetric analysis of the multiple melting behavior of poly(L-lactic acid). J. Appl. Polym. Sci.2006, 100, 3145–3151.

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51403089, 51373169, 21574060, and 21374044), the Major Special Projects of Jiangxi Provincial Department of Science and Technology (No. 20114ABF05100), the Project of Jiangxi Provincial Department of Education (No. GJJ170229), the Technology Plan Landing Project of Jiangxi Provincial Department of Education (No. GCJ2011-243), the Outstanding Youth Foundation of Jiangxi Normal University, China Postdoctoral Science Foundation (No. 2019M652282), and Postdoctoral Science Foundation of Jiangxi Province (No. 2018KY37).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Shao or Hao-Qing Hou.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, CS., Chen, Y., Shao, J. et al. The Crystallization and Melting Behaviors of PDLA-b-PBS-b-PDLA Triblock Copolymers. Chin J Polym Sci 38, 298–310 (2020). https://doi.org/10.1007/s10118-020-2361-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2361-6

Keywords

Navigation