Skip to main content
Log in

Energetic and exergetic evaluation of methanol synthesis process in a hybridized system of methane cracking, chemical looping combustion, thermal desalination and photovoltaic panels

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Due to limited energy supply sources and environmental issues, the use of renewable energy to replace fossil fuels and reduce pollution has increased. One of the easiest, safest, and most portable ways to store renewable energy for a long time is to convert it to liquid methanol. In this paper, a novel integrated system is developed for cogeneration of liquid methanol and freshwater using methane cracking unit integrated with chemical looping combustion, methanol production cycle, multi-effect desalination, and photovoltaic panels. The thermal integration of new structures for cogeneration leads to a reduction in the number of equipment used and an increase in efficiency. This integrated structure produces 23.97 kmol h−1 liquid methanol, 204.3 kmol h−1 desalinated water, 42.49 kmol h−1 solid carbon, 58.52 kmol h−1 nitrogen, and 668.9 kmol h−1 hot water. The waste heat of the chemical looping combustion is used to supply methane cracking unit, which produces 84.99 kmol h−1 hydrogen, 7.582 kmol h−1 carbon dioxide, and 24.74 kW power. These products and the excess carbon dioxide supplied from outside are used as input feed for the liquid methanol production cycle. Waste heat from the liquid methanol production cycle is used to supply heat to the thermal desalination cycle and produce hot water. The thermal energy and exergy efficiencies of the integrated structure are 48.64% and 71.68%, respectively. In the hybrid structure, the largest share of exergy destruction belongs to reactors (65.61%), photovoltaic panels (17.73%), and heat exchangers (10.97%), respectively. Sensitivity analysis in different operating conditions is used to investigate the sensitivity and changes in the output and important parameters of the process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

e :

Specific flow exergy (kJ kmol−1)

CLC:

Chemical looping combustion

h :

Specific enthalpy (kJ kmol−1)

I :

Dissipation lost exergy

I :

Current (A)

V :

Voltage (V)

FF:

Fill factor

P :

Power (kW)

A :

Area (m2)

NOCT:

Nominal operating cell temperature (°C)

mp:

Maximum power

G :

Gibbs

G :

Present solar radiation

PV:

Photovoltaic

PM:

Parallel cell

T a :

Ambient temperature (°C)

Ex:

Substances current exergy (kW)

ExQ :

Energy current exergy (kW)

W :

Work (kW)

oc:

Open-circuit

R :

Universal gas constant (8.314 kJ kgmol−1 °C−1)

s :

Specific entropy (kJ kgmol−1 °C−1)

pc:

Power conversion

η :

Efficiency (%)

Σ:

Sum

ph:

Physical

ch:

Chemical

sh:

Shaft

Max:

Maximum

CH4 :

Methane

H2 :

Hydrogen

C:

Carbon

NiO:

Nickel oxide

Ni:

Nickel

CO:

Carbon monoxide

CO2 :

Carbon dioxide

H2O:

Water

O2 :

Oxygen

CH3OH:

Methanol

MED:

Multi-effect desalination

MED-MVC:

Multi-effect distillation-mechanical vapor compression

MED-TVC:

Multi-effect distillation-thermal vapor compression

SM:

Series cell

T :

Turbine

P :

Pump

HX:

Heat exchanger

C :

Compressor

Mix:

Mixer

Sep:

Separator, flash drum

T :

Tower

R :

Reactor

N :

Number

0:

Reference state

o:

Outlet

c:

Current, Cell

i:

Inlet

M:

Module

References

  1. Ahmadi MH, Ghazvini M, Sadeghzadeh M, Alhuyi Nazari M, Ghalandari M. Utilization of hybrid nanofluids in solar energy applications: a review. Nano-Struct Nano-Obj. 2019;20:100386. https://doi.org/10.1016/j.nanoso.2019.100386.

    Article  Google Scholar 

  2. Gupta RB. Hydrogen fuel: production, transport, and storage. Boca Raton: CRC Press; 2008.

    Book  Google Scholar 

  3. Herdem MS, Mazzeo D, Matera N, Wen JZ, Nathwani J, Hong Z. Simulation and modeling of a combined biomass gasification-solar photovoltaic hydrogen production system for methanol synthesis via carbon dioxide hydrogenation. Energy Convers Manag. 2020;219:113045.

    Article  CAS  Google Scholar 

  4. Baek J-I, Yang S-R, Eom TH, Lee JB, Ryu CK. Effect of MgO addition on the physical properties and reactivity of the spray-dried oxygen carriers prepared with a high content of NiO and Al2O3. Fuel. 2015;144:317–26.

    Article  CAS  Google Scholar 

  5. Sajid MU, Bicer Y. Thermodynamic assessment of chemical looping combustion and solar thermal methane cracking-based integrated system for green ammonia production. Therm Sci Eng Prog. 2020;19:100588.

    Article  Google Scholar 

  6. Weger L, Abánades A, Butler T. Methane cracking as a bridge technology to the hydrogen economy. Int J Hydrog Energy. 2017;42(1):720–31.

    Article  CAS  Google Scholar 

  7. Wei L, Tan Y, Han Y, Zhao J, Wu J, Zhang D. Hydrogen production by methane cracking over different coal chars. Fuel. 2011;90(11):3473–9.

    Article  CAS  Google Scholar 

  8. Abanades S, Flamant G. Experimental study and modeling of a high-temperature solar chemical reactor for hydrogen production from methane cracking. Int J Hydrog Energy. 2007;32(10–11):1508–15.

    Article  CAS  Google Scholar 

  9. Wang Z, Fan W, Zhang G, Dong S. Exergy analysis of methane cracking thermally coupled with chemical looping combustion for hydrogen production. Appl Energy. 2016;168:1–12.

    Article  CAS  Google Scholar 

  10. Postels S, Abánades A, von der Assen N, Rathnam RK, Stückrad S, Bardow A. Life cycle assessment of hydrogen production by thermal cracking of methane based on liquid–metal technology. Int J Hydrog Energy. 2016;41(48):23204–12.

    Article  CAS  Google Scholar 

  11. Rydén M, Lyngfelt A. Using steam reforming to produce hydrogen with carbon dioxide capture by chemical-looping combustion. Int J Hydrog Energy. 2006;31(10):1271–83.

    Article  Google Scholar 

  12. Ishida M, Zheng D, Akehata T. Evaluation of a chemical-looping-combustion power-generation system by graphic exergy analysis. Energy. 1987;12(2):147–54.

    Article  CAS  Google Scholar 

  13. Ghazvini M, Sadeghzadeh M, Ahmadi MH, Moosavi S, Pourfayaz F. Geothermal energy use in hydrogen production: a review. Int J Energy Res. 2019;43(14):7823–51. https://doi.org/10.1002/er.4778.

    Article  Google Scholar 

  14. Mehrpooya M, Ghorbani B, Shahsavari A, Zaitsev A. Conversion and storage of solar energy in the forms of liquid fuel and electricity in a hybrid energy storage system using methanol and phase change materials. Energy Convers Manag. 2020;209:112669.

    Article  CAS  Google Scholar 

  15. Ortiz FG, Serrera A, Galera S, Ollero P. Methanol synthesis from syngas obtained by supercritical water reforming of glycerol. Fuel. 2013;105:739–51.

    Article  Google Scholar 

  16. Puig-Gamero M, Argudo-Santamaria J, Valverde J, Sánchez P, Sanchez-Silva L. Three integrated process simulation using aspen plus®: pine gasification, syngas cleaning and methanol synthesis. Energy Convers Manag. 2018;177:416–27.

    Article  CAS  Google Scholar 

  17. Pérez-Fortes M, Schöneberger JC, Boulamanti A, Tzimas E. Methanol synthesis using captured CO2 as raw material: techno-economic and environmental assessment. Appl Energy. 2016;161:718–32.

    Article  Google Scholar 

  18. Leonzio G, Zondervan E, Foscolo PU. Methanol production by CO2 hydrogenation: analysis and simulation of reactor performance. Int J Hydrog Energy. 2019;44(16):7915–33.

    Article  CAS  Google Scholar 

  19. Matzen M, Alhajji M, Demirel Y. Chemical storage of wind energy by renewable methanol production: feasibility analysis using a multi-criteria decision matrix. Energy. 2015;93:343–53.

    Article  CAS  Google Scholar 

  20. Matzen M, Demirel Y. Methanol and dimethyl ether from renewable hydrogen and carbon dioxide: alternative fuels production and life-cycle assessment. J Clean Prod. 2016;139:1068–77.

    Article  CAS  Google Scholar 

  21. Kiss AA, Pragt J, Vos H, Bargeman G, De Groot M. Novel efficient process for methanol synthesis by CO2 hydrogenation. Chem Eng J. 2016;284:260–9.

    Article  CAS  Google Scholar 

  22. Bonfim-Rocha L, Gimenes ML, de Faria SHB, Silva RO, Esteller LJ. Multi-objective design of a new sustainable scenario for bio-methanol production in Brazil. J Clean Prod. 2018;187:1043–56.

    Article  Google Scholar 

  23. Van-Dal ÉS, Bouallou C. Design and simulation of a methanol production plant from CO2 hydrogenation. J Clean Prod. 2013;57:38–45.

    Article  CAS  Google Scholar 

  24. Cifre PG, Badr O. Renewable hydrogen utilisation for the production of methanol. Energy Convers Manag. 2007;48(2):519–27.

    Article  Google Scholar 

  25. Razmi A, Soltani M, Tayefeh M, Torabi M, Dusseault M. Thermodynamic analysis of compressed air energy storage (CAES) hybridized with a multi-effect desalination (MED) system. Energy Convers Manag. 2019;199:112047.

    Article  Google Scholar 

  26. Ghorbani B, Ebrahimi A, Moradi M, Ziabasharhagh M. Energy, exergy and sensitivity analyses of a novel hybrid structure for generation of bio-liquefied natural gas, desalinated water and power using solar photovoltaic and geothermal source. Energy Convers Manag. 2020;222:113215.

    Article  CAS  Google Scholar 

  27. Ghorbani B, Miansari M, Zendehboudi S, Hamedi M-H. Exergetic and economic evaluation of carbon dioxide liquefaction process in a hybridized system of water desalination, power generation, and liquefied natural gas regasification. Energy Convers Manag. 2020;205:112374.

    Article  CAS  Google Scholar 

  28. DinAli MN, Dincer I. Development of a new trigenerational integrated system for dimethyl-ether, electricity and fresh water production. Energy Convers Manag. 2019;185:850–65.

    Article  CAS  Google Scholar 

  29. Ghorbani B, Shirmohammadi R, Amidpour M, Inzoli F, Rocco M. Design and thermoeconomic analysis of a multi-effect desalination unit equipped with a cryogenic refrigeration system. Energy Convers Manag. 2019;202:112208.

    Article  Google Scholar 

  30. Ahmadi MH, Ghazvini M, Sadeghzadeh M, Alhuyi Nazari M, Kumar R, Naeimi A, et al. Solar power technology for electricity generation: a critical review. Energy Sci Eng. 2018;6(5):340–61. https://doi.org/10.1002/ese3.239.

    Article  Google Scholar 

  31. Menia S, Tebibel H, Lassouane F, Khellaf A, Nouicer I. Hydrogen production by methanol aqueous electrolysis using photovoltaic energy: Algerian potential. Int J Hydrog Energy. 2017;42(13):8661–9.

    Article  CAS  Google Scholar 

  32. Esmaili P, Dincer I, Naterer G. Development and analysis of an integrated photovoltaic system for hydrogen and methanol production. Int J Hydrog Energy. 2015;40(34):11140–53.

    Article  CAS  Google Scholar 

  33. Ghorbani B, Mehrpooya M, Sadeghzadeh M. Process development of a solar-assisted multi-production plant: power, cooling, and hydrogen. Int J Hydrog Energy. 2020;45(55):30056–79.

    Article  CAS  Google Scholar 

  34. Sadeghzadeh M, Ahmadi MH, Kahani M, Sakhaeinia H, Chaji H, Chen L. Smart modeling by using artificial intelligent techniques on thermal performance of flat-plate solar collector using nanofluid. Energy Sci Eng. 2019;7(5):1649–58. https://doi.org/10.1002/ese3.381.

    Article  Google Scholar 

  35. Gholami A, Hajinezhad A, Pourfayaz F, Ahmadi MH. The effect of hydrodynamic and ultrasonic cavitation on biodiesel production: an exergy analysis approach. Energy. 2018;160:478–89. https://doi.org/10.1016/j.energy.2018.07.008.

    Article  Google Scholar 

  36. Hosseini SS, Mehrpooya M, Alsagri AS, Alrobaian AA. Introducing, evaluation and exergetic performance assessment of a novel hybrid system composed of MCFC, methanol synthesis process, and a combined power cycle. Energy Convers Manag. 2019;197:111878.

    Article  CAS  Google Scholar 

  37. Noroozian A, Mohammadi A, Bidi M, Ahmadi MH. Energy, exergy and economic analyses of a novel system to recover waste heat and water in steam power plants. Energy Convers Manag. 2017;144:351–60.

    Article  CAS  Google Scholar 

  38. Naseri A, Bidi M, Ahmadi MH, Saidur R. Exergy analysis of a hydrogen and water production process by a solar-driven transcritical CO2 power cycle with Stirling engine. J Clean Prod. 2017;158:165–81. https://doi.org/10.1016/j.jclepro.2017.05.005.

    Article  CAS  Google Scholar 

  39. Ghorbani B, Mehrpooya M, Shirmohammadi R, Hamedi M-H. A comprehensive approach toward utilizing mixed refrigerant and absorption refrigeration systems in an integrated cryogenic refrigeration process. J Clean Prod. 2018;179:495–514.

    Article  CAS  Google Scholar 

  40. Mohammadi A, Ahmadi MH, Bidi M, Joda F, Valero A, Uson S. Exergy analysis of a combined cooling, heating and power system integrated with wind turbine and compressed air energy storage system. Energy Convers Manag. 2017;131:69–78.

    Article  Google Scholar 

  41. Khatib T, Elmenreich W. Modeling of photovoltaic systems using Matlab: simplified green codes. New York: Wiley; 2016.

    Book  Google Scholar 

  42. Joshi AS, Dincer I, Reddy BV. Thermodynamic assessment of photovoltaic systems. Sol Energy. 2009;83(8):1139–49.

    Article  Google Scholar 

  43. Sarhaddi F, Farahat S, Ajam H, Behzadmehr A. Exergetic performance evaluation of a solar photovoltaic (PV) array. Aust J Basic Appl Sci. 2010;4(3):502–19.

    CAS  Google Scholar 

  44. Nouri M, Miansari M, Ghorbani B. Exergy and economic analyses of a novel hybrid structure for simultaneous production of liquid hydrogen and carbon dioxide using photovoltaic and electrolyzer systems. J Clean Prod. 2020;259:120862.

    Article  CAS  Google Scholar 

  45. Ghorbani B, Hamedi M-H, Amidpour M, Shirmohammadi R. Implementing absorption refrigeration cycle in lieu of DMR and C3MR cycles in the integrated NGL, LNG and NRU unit. Int J Refrig. 2017;77:20–38. https://doi.org/10.1016/j.ijrefrig.2017.02.030.

    Article  CAS  Google Scholar 

  46. Ghorbani B, Shirmohammadi R, Mehrpooya M. A novel energy efficient LNG/NGL recovery process using absorption and mixed refrigerant refrigeration cycles—economic and exergy analyses. Appl Therm Eng. 2018;132:283–95. https://doi.org/10.1016/j.applthermaleng.2017.12.099.

    Article  CAS  Google Scholar 

  47. Vakilabadi MA, Bidi M, Najafi AF, Ahmadi MH. Exergy analysis of a hybrid solar-fossil fuel power plant. Energy Sci Eng. 2019;7(1):146–61. https://doi.org/10.1002/ese3.265.

    Article  CAS  Google Scholar 

  48. Ekrataleshian A, Pourfayaz F, Ahmadi MH. Thermodynamic and thermoeconomic analyses and energetic and exergetic optimization of a turbojet engine. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-10310-z.

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

M.H.M.S. helped in investigation, validation, original draft, writing—original draft, software. B.G. contributed to supervision, conceptualization, methodology, investigation, validation, original draft, writing—original draft, software.

Corresponding author

Correspondence to Bahram Ghorbani.

Ethics declarations

Conflict of interest

The author declares that he has no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monajati Saharkhiz, M.H., Ghorbani, B. Energetic and exergetic evaluation of methanol synthesis process in a hybridized system of methane cracking, chemical looping combustion, thermal desalination and photovoltaic panels. J Therm Anal Calorim 145, 1385–1411 (2021). https://doi.org/10.1007/s10973-021-10576-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10576-x

Keywords

Navigation