Skip to main content
Log in

Improvement of energy dissipative particle dynamics method to increase accuracy

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this article, dissipative particle dynamics with energy conservation eDPD is used for simulating hydrodynamic behavior and heat transfer of DPD particles in a two-dimensional channel with parallel planes. To this end, a Fortran programming code is developed and the results are presented as dimensionless velocity and temperature profiles on the cross section perpendicular to the flow direction inside the channel. For the indented geometry, thermal and dynamic boundary conditions have been considered. The dynamic boundary condition of solution domain in the flow’s direction is periodic, and for modeling the walls, freezing layers of DPD particles with Bounce-Back reflection has been used. For the thermal boundary condition, it is assumed that the wall temperature is constant and the temperature of each DPD particle in contact with the wall is the same as the wall temperature. In this article, for the first time, for modeling the walls four frozen layers with Bounce-Back reflection are used and the effect of particle exit on two and three-layers configurations is investigated. Furthermore, for the first time, modified velocity Verlet integration algorithm is improved by adding heat transfer equations. And considering λ = 0.65 in the algorithm; the indented geometry is well simulated. In order to validate the results, first, the effect of regular and random initial distribution is compared. Furthermore, the results of wall alignment are compared with those obtained from CFD approach. In this paper, in addition to studying the effect of wall alignment and initial particle arrangement, the influence of the size of cells for averaging and the time steps in the output results are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2: a
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Karimipour A, Hemmat Esfe M, Safaei R, Toghraie Semiromi D, Jafari S, Kazi SN. Mixed convection of copper–water nanofluid in a shallow inclined lid driven cavity using the lattice Boltzmann method. Phys A. 2014;402:150–68. https://doi.org/10.1016/j.physa.2014.01.057.

    Article  CAS  Google Scholar 

  2. Moshfegh A, Abouei Mehrizi A, Javadzadegan A, Joshaghani M, Ghasemi-Fare O. Numerical investigation of various nanofluid heat transfers in microchannel under the effect of partial magnetic field: lattice Boltzmann approach. J Therm Anal Calorim. 2020;140:773–87. https://doi.org/10.1007/s10973-019-08862-w.

    Article  CAS  Google Scholar 

  3. Karimipour A, Hossein-Nezhad A, D’Orazio A, Hemmat-Esfe M, Safaei R, Shirani E. Simulation of copper–water nanofluid in a microchannel in slip flow regime using the lattice Boltzmann method. Eur J Mech B/Fluids. 2015;49(A):89–99. https://doi.org/10.1016/j.euromechflu.2014.08.004.

  4. D’Orazio A, Karimipour A. A useful case study to develop lattice Boltzmann method performance: gravity effects on slip velocity and temperature profiles of an air flow inside a microchannel under a constant heat flux boundary condition. Int J Heat Mass Transf. 2019;136:1017–29. https://doi.org/10.1016/j.ijheatmasstransfer.2019.03.029.

    Article  Google Scholar 

  5. Alipour P, Toghraie D, Karimipour A, Hajian M. Modeling different structures in perturbed Poiseuille flow in a nanochannel by using of molecular dynamics simulation: study the equilibrium. Phys A. 2019;515:13–30. https://doi.org/10.1016/j.physa.2018.09.177.

    Article  Google Scholar 

  6. Alipour Lalami A, Hassanzadeh Afrouzi H, Moshfegh A. Investigation of MHD effect on nanofluid heat transfer in microchannels. J Therm Anal Calorim. 2019;136:1959–75. https://doi.org/10.1007/s10973-018-7851-1.

    Article  CAS  Google Scholar 

  7. Hantao L, Yuxiang L, Shan J, Jianzhong C, Haijin H. Energy-conserving dissipative particle dynamics simulation of macromolecular solution flow in micro-channel under thermal convection. Eng Anal Boundary Elem. 2019;102:21–8. https://doi.org/10.1016/j.enganabound.2019.02.006.

    Article  Google Scholar 

  8. Jafari S, Zakeri R, Darbandi M. DPD simulation of non-Newtonian electroosmotic fluid flow in nanochannel. Mol Simul. 2018;44(17):1444–53. https://doi.org/10.1080/08927022.2018.1517414.

    Article  CAS  Google Scholar 

  9. Zarei A, Karimipour A, Meghdadi Isfahani A, Tian Z. Improve the performance of lattice Boltzmann method for a porous nanoscale transient flow by provide a new modified relaxation time equation. Phys A. 2019;535:122453. https://doi.org/10.1016/j.physa.2019.122453.

    Article  CAS  Google Scholar 

  10. Javidi-Sarafan M, Alizadeh R, Fattahi A, Valizadeh-Ardalan M, Karimi N. Heat and mass transfer and thermodynamic analysis of power-law fluid flow in a porous microchannel. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09679-8.

    Article  Google Scholar 

  11. Ghani Dehkordi K, Karimipour A, Afrand M, Toghraie D, Meghdadi Isfahani AM. The electric field and microchannel type effects on H2O/Fe3O4 nanofluid boiling process: molecular dynamics study. Int J Thermophys. 2020;41:132. https://doi.org/10.1007/s10765-020-02714-8.

    Article  CAS  Google Scholar 

  12. Asgari A, Nguyen Q, Karimipour A, Bach Q, Hekmatifar M, Sabetvand R. Develop molecular dynamics method to simulate the flow and thermal domains of H2O/Cu nanofluid in a nanochannel affected by an external electric field. Int J Thermophys. 2020;41:126. https://doi.org/10.1007/s10765-020-02708-6.

    Article  CAS  Google Scholar 

  13. Hoogerbrugge PJ, Koelman JMVA. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys Lett. 1992;19:155–60. https://doi.org/10.1209/0295-5075/19/3/001.

    Article  Google Scholar 

  14. Hoogerbrugge PJ, Koelman JMVA. Dynamic simulations of hard-sphere suspensions under steady shear. Europhys Lett. 1993;21:363.

    Article  Google Scholar 

  15. Español P. Dissipative particle dynamics with energy conservation. Europhys Lett. 1997;40(6):631–6. https://doi.org/10.1209/epl/i1997-00515-8.

    Article  Google Scholar 

  16. Español P, Warren P. Statistical-mechanics of dissipative particle dynamics. Europhys Lett. 1995;30(4):191–6.

    Article  Google Scholar 

  17. Li Z, Drazer G. Hydrodynamic interactions in dissipative particle dynamics. Phys Fluids. 2008;20(10):103601. https://doi.org/10.1063/1.2980039.

    Article  CAS  Google Scholar 

  18. Qiao R, He P. Mapping of dissipative particle dynamics in fluctuating hydrodynamics simulations. J Chem Phys. 2008;128(12):126101. https://doi.org/10.1063/1.2897991.

    Article  CAS  PubMed  Google Scholar 

  19. Bolintineanu DS, Grest GS, Lechman JB, Pierce F, Plimpton SJ, Schunk PR. Particle dynamics modeling methods for colloid suspensions. Comput Particle Mech. 2014;1(3):321–56. https://doi.org/10.1007/s40571-014-0007-6.

    Article  Google Scholar 

  20. Mou-Bin L, Jian-Zhong C, & Han-Tao L. DPD simulation of multiphase flow at small scales. In 2010 The 2nd International Conference on Computer and Automation Engineering (ICCAE). IEEE. 2010. https://doi.org/10.1109/iccae.2010.5451423.

  21. Liu M, Meakin P, Huang H. Dissipative particle dynamics simulation of multiphase fluid flow in microchannels and microchannel networks. Phys Fluids. 2007;19(3):33302. https://doi.org/10.1063/1.2717182.

    Article  CAS  Google Scholar 

  22. Liu M, Meakin P, Huang H. Dissipative particle dynamics simulation of pore-scale multiphase fluid flow. Water Resour Res. 2007. https://doi.org/10.1029/2006wr004856.

    Article  Google Scholar 

  23. Litvinov S, Xie Q, Hu X, Adams N, Ellero M. Simulation of individual polymer chains and polymer solutions with smoothed dissipative particle dynamics. Fluids. 2016;1(1):7. https://doi.org/10.3390/fluids1010007.

    Article  CAS  Google Scholar 

  24. Yang K, Vishnyakov A, Neimark AV. Polymer translocation through a nanopore: DPD study. J Phys Chem B. 2013;117(13):3648–58. https://doi.org/10.1021/jp3104672.

    Article  CAS  PubMed  Google Scholar 

  25. Jehser M, Zifferer G, Likos C. Scaling and Interactions of Linear and Ring Polymer Brushes via DPD Simulations. Polymers. 2019;11(3):541. https://doi.org/10.3390/polym11030541.

    Article  CAS  PubMed Central  Google Scholar 

  26. Kacar G. Dissipative particle dynamics simulation parameters and interactions of a hydrogel. J Turk Chem Soc Sect A Chem. 2017;10:1–12. https://doi.org/10.18596/jotcsa.309646.

    Article  CAS  Google Scholar 

  27. Pan D, Phan-Thien N, Khoo BC. Dissipative particle dynamics simulation of droplet suspension in shear flow at low Capillary number. J Nonnewton Fluid Mech. 2014;212:63–72. https://doi.org/10.1016/j.jnnfm.2014.08.011.

    Article  CAS  Google Scholar 

  28. Pan D, Phan-Thien N, Khoo BC. Studies on liquid–liquid interfacial tension with standard dissipative particle dynamics method. Mol Simul. 2014;41(14):1166–76. https://doi.org/10.1080/08927022.2014.952636.

    Article  CAS  Google Scholar 

  29. Zhang Y, Xu J, He X. Effect of surfactants on the deformation of single droplet in shear flow studied by dissipative particle dynamics. Mol Phys. 2018;116(14):1851–61. https://doi.org/10.1080/00268976.2018.1459916.

    Article  CAS  Google Scholar 

  30. Basan M, Prost J, Joanny JF, Elgeti J. Dissipative particle dynamics simulations for biological tissues: rheology and competition. Phys Biol. 2011;8(2):26014. https://doi.org/10.1088/1478-3975/8/2/026014.

    Article  Google Scholar 

  31. Ye T, Phan-Thien N, Khoo BC, Lim CT. Dissipative particle dynamics simulations of deformation and aggregation of healthy and diseased red blood cells in a tube flow. Phys Fluids. 2014;26(11):111902. https://doi.org/10.1063/1.4900952.

    Article  CAS  Google Scholar 

  32. Phan-Thien N, Mai-Duy N, Nguyen TYN. A note on dissipative particle dynamics (DPD) modelling of simple fluids. Comput Fluids. 2018;176:97–108. https://doi.org/10.1016/j.compfluid.2018.08.030.

    Article  Google Scholar 

  33. Mai-Duy N, Phan-Thien N, Tran-Cong T. An improved dissipative particle dynamics scheme. Appl Math Model. 2017;46:602–17. https://doi.org/10.1016/j.apm.2017.01.086.

    Article  Google Scholar 

  34. Abu-Nada E. Dissipative particle dynamics investigation of heat transfer mechanisms in Al2O3-water nanofluid. Int J Therm Sci. 2018;123:58–72. https://doi.org/10.1016/j.ijthermalsci.2017.09.005.

    Article  CAS  Google Scholar 

  35. Abu-Nada E, Pop I, Mahian O. A dissipative particle dynamics two-component nanofluid heat transfer model: application to natural convection. Int J Heat Mass Transf. 2019;133:1086–98. https://doi.org/10.1016/j.ijheatmasstransfer.2018.12.151.

    Article  CAS  Google Scholar 

  36. Abu-Nada E. Simulation of heat transfer enhancement in nanofluids using dissipative particle dynamics. Int Com in Heat Mass Transf. 2017;85:1–11. https://doi.org/10.1016/j.icheatmasstransfer.2017.04.008.

    Article  CAS  Google Scholar 

  37. Okonkwo EC, Wole-Osho I, Almanassra IW, Abdullatif YM, Al-Ansari T. An updated review of nanofluids in various heat transfer devices. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09760-2.

    Article  Google Scholar 

  38. Alshare A, Al-Kouz W, Alkhalidi A, Kiwan S, Chamkha A. Periodically fully developed nanofluid transport through a wavy module. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09448-7.

    Article  Google Scholar 

  39. Tong Z, Liu H, Liu Y, Li H, Jiang S, Chang J, Hu S, Li G, Hao H. A study on the dynamic behavior of macromolecular suspension fow in micro–channel under thermal gradient using energy-conserving dissipative particle dynamics simulation. Microfuidics and Nanofuidics. 2020;24:34. https://doi.org/10.1007/s10404-020-02338-2.

    Article  CAS  Google Scholar 

  40. Yaghoubi S, Shirani E, Pishevar, AR. Improvement of Dissipative Particle Dynamics method by taking into account the particle size. Scientia Iranica. 2018. https://doi.org/10.24200/sci.2018.21042.

  41. Yaghoubi S, Shirani E, Pishevar AR, Afshar Y. New modified weight function for the dissipative force in the DPD method to increase the Schmidt number. EPL (Europhysics Letters). 2015;110(2):24002. https://doi.org/10.1209/0295-5075/110/24002.

    Article  CAS  Google Scholar 

  42. Ripoll M, Español P, Ernst MH. Dissipative particle dynamics with energy conservation: heat conduction. Int J Mod Phys. 1998;9(8):1329–38. https://doi.org/10.1142/S0129183198001205.

    Article  Google Scholar 

  43. Qiao R, He P. Simulation of heat conduction in nanocomposite using energy conserving dissipative particle dynamics. Mol Simul. 2007;33:667–83. https://doi.org/10.1080/08927020701286511.

    Article  CAS  Google Scholar 

  44. He P, Qiao R. Self-consistent fluctuating hydrodynamics simulation of thermal transport in nanoparticle suspensions. J Appl Physiol. 2008;103(9):094305. https://doi.org/10.1063/1.2908217.

    Article  CAS  Google Scholar 

  45. Borhani M, Yaghoubi S. Numerical simulation of heat transfer in a parallel plate channel and promote dissipative particle dynamics method using different weight functions. Int Com in Heat and Mass Transf. 2020;115:104606. https://doi.org/10.1016/j.icheatmasstransfer.2020.104606.

    Article  Google Scholar 

  46. Abu-Nada E. Modeling of various heat transfer problems using dissipative particle dynamics. Numer Heat Transfer, Part A. 2010;58:660–7. https://doi.org/10.1080/10407782.2010.516681.

    Article  Google Scholar 

  47. Abu-Nada E. Heat transfer simulation using energy conservative dissipative particle dynamics. Mol Simul. 2010;36(5):382–90. https://doi.org/10.1080/08927020903515337.

    Article  CAS  Google Scholar 

  48. Mackie AD, Bonet D, Avalos JB, Navas V. Dissipative particle dynamics with energy conservation: modeling of heat flow. Phys Chem Chem Phys. 1999;1:2039–49. https://doi.org/10.1039/A809502G.

    Article  CAS  Google Scholar 

  49. Yamada T, Kumar A, Asako Y, Gregory OJ, Faghri M. Forced convection heat transfer simulation using dissipative particle dynamics. Numer. Heat Transfer A. 2011;60(8):651–65. https://doi.org/10.1080/10407782.2011.616847.

    Article  Google Scholar 

  50. Groot RD, Warren PB. Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation. J Chem Phys. 1997;107:4423–35. https://doi.org/10.1063/1.474784.

    Article  CAS  Google Scholar 

  51. Cao ZH, Luo K, Yi HL, Tan HP. Energy conservative dissipative particle dynamics simulation of mixed convection in eccentric annulus. Int J Heat Mass Transf. 2014;74:60–76. https://doi.org/10.1016/j.ijheatmasstransfer.2014.03.022.

    Article  Google Scholar 

  52. Abu-Nada E. Mixed convection simulation using dissipative particle dynamics. Numer Heat Transfer, Part A. 2015;67:808–25. https://doi.org/10.1080/10407782.2014.949178.

    Article  CAS  Google Scholar 

  53. Tiwari A. Dissipative Particle Dynamics model for two phase flows, Ph.D.thesis, Purdue University, Purdue, 2006.

  54. Xie Y, Chen S. Numerical simulation of heat transfer in microchannel using energy conservative dissipative particle dynamics. Adv Mech Eng. 2015;7(3):168781401557123. https://doi.org/10.1177/1687814015571230.

    Article  Google Scholar 

  55. Laradji M, Kumar PBS. Dynamics of domain growth in self assembled fluid vesicles. Phys Rev Lett. 2004;93(19):198105. https://doi.org/10.1103/PhysRevLett.93.198105.

    Article  CAS  PubMed  Google Scholar 

  56. Yamada T, Hamian S, Sundén B, Park K, Faghri M. Diffusive-ballistic heat transport in thin films using energy conserving dissipative particle dynamics. Int J Heat Mass Transfer. 2013;61:287–92. https://doi.org/10.1016/j.ijheatmasstransfer.2013.02.011.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somaye Yaghoubi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borhani, M., Yaghoubi, S. Improvement of energy dissipative particle dynamics method to increase accuracy. J Therm Anal Calorim 144, 2543–2555 (2021). https://doi.org/10.1007/s10973-020-10362-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10362-1

Keywords

Navigation