Skip to main content

Advertisement

Log in

The Electric Field and Microchannel Type Effects on H2O/Fe3O4 Nanofluid Boiling Process: Molecular Dynamics Study

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

In this computational research, we study the electric field and microchannel type effects on H2O/Fe3O4 nanofluid dynamical manner. The dynamical characteristics of this atomic structure are calculated using molecular dynamics method and we reported physical parameters such as total temperature, total energy, radial distribution function, velocity, density and temperature profiles of H2O/Fe3O4 nanofluid with 2 spherical nanoparticles. Physically, inserting external electric field causes phase transition (boiling process) in H2O/Fe3O4 nanofluid in shorter simulation time. Further, our results show that magnitude of external electric field is a significant parameter in nanofluid dynamical manner in microchannels. By external electric field magnitude increasing, the highest rate of velocity, temperature and density of nanofluid enhance to 0.0071 Å·ps−1, 714 K and 0.038 atom·Å−3 rates, numerically. Further, by microchannel atomic type variation from Pt to Au one, the rate of temperature and velocity of nanofluids reach to maximum rate at Au microchannel. So we conclude that phase transition of nanofluid in Au microchannel occurs in shorter MD simulation time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. R.A. Taylor et al., Small particles, big impacts: A review of the diverse applications of nanofluids. J. Appl. Phys. 113, 011301–011301–19 (2013). [Bibcode:2013JA.113a1301T]

    Article  Google Scholar 

  2. J. Buongiorno, Convective transport in nanofluids. J. Heat Transfer 128, 240–250 (2006)

    Article  Google Scholar 

  3. M. Jama, T. Singh, S.M. Gamaleldin, M. Koc, A. Samara, R.J. Isaifan, M.A. Atieh, Critical review on nanofluids: preparation, characterization, and applications. J. Nanomater. 2016, 1–22 (2016)

    Article  Google Scholar 

  4. C. Kleinstreuer, Y. Feng, Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review. Nanoscale Res. Lett. 6, 229 (2011)

    Article  ADS  Google Scholar 

  5. W. Yu, H. Xie, A review on nanofluids: preparation, stability mechanisms, and applications. J. Nanomater. 2012, 1–17 (2012)

    Google Scholar 

  6. Sadik Kakaç, Anchasa Pramuanjaroenkij, Review of convective heat transfer enhancement with nanofluids. Int. J. Heat Mass Transf. 52, 3187–3196 (2009)

    Article  Google Scholar 

  7. S. Witharana, H. Chen, Y. Ding, Stability of nanofluids in quiescent and shear flow fields. Nanoscale Res. Lett. 6, 231 (2011)

    Article  ADS  Google Scholar 

  8. H. Chen, S. Witharana et al., Predicting thermal conductivity of liquid suspensions of nanoparticles (nanofluids) based on rheology. Particuology. 7, 151–157 (2009)

    Article  Google Scholar 

  9. Y. Ding, H. Alias, D. Wen, R.A. Williams, Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). Int. J. Heat Mass Transf. 49, 240–250 (2006)

    Article  Google Scholar 

  10. H. Akhavan-Zanjani, M. Saffar-Avval, M. Mansourkiaei, M. Ahadi, F. Sharif, Turbulent convective heat transfer and pressure drop of graphene-water nanofluid flowing inside a horizontal circular tube. J. Dispersion Sci. Technol. 35, 1230–1240 (2014)

    Article  Google Scholar 

  11. M. Bahiraei, Effect of particle migration on flow and heat transfer characteristics of magnetic nanoparticle suspensions. J. Mol. Liquids 209, 531–538 (2015)

    Article  Google Scholar 

  12. A. Malvandi, Amirmahdi Ghasemi, D.D. Ganji, Thermal performance analysis of hydromagnetic Al2O3-water nanofluid flows inside a concentric microannulus considering nanoparticle migration and asymmetric heating. Int. J. Thermal Sci. 109, 10–22 (2016)

    Article  Google Scholar 

  13. M. Bahiraei, Studying nanoparticle distribution in nanofluids considering the effective factors on particle migration and determination of phenomenological constants by Eulerian–Lagrangian simulation. Advanced Powder Technology. Special issue of the 7th World Congress on Particle Technology. 26, 802–810 (2015)

  14. H.A. Pakravan, M. Yaghoubi, Analysis of nanoparticles migration on natural convective heat transfer of nanofluids. Int. J. Thermal Sci. 68, 79–93 (2013)

    Article  Google Scholar 

  15. A. Malvandi, S.A. Moshizi, D.D. Ganji, Two-component heterogeneous mixed convection of alumina/water nanofluid in microchannels with heat source/sink. Adv. Powder Technol. 27, 245–254 (2016)

    Article  Google Scholar 

  16. A. Malvandi, D.D. Ganji, Brownian motion and thermophoresis effects on slip flow of alumina/water nanofluid inside a circular microchannel in the presence of a magnetic field. Int. J. Thermal Sci. 84, 196–206 (2014)

    Article  Google Scholar 

  17. M. Bahiraei, F. Abdi, Development of a model for entropy generation of water-TiO2 nanofluid flow considering nanoparticle migration within a minichannel. Chemometr. Intell. Lab. Syst. 157, 16–28 (2016)

    Article  Google Scholar 

  18. B.J. Alder, T.E. Wainwright, Studies in molecular dynamics.I. General method. J. Chem. Phys. 31, 459 (1959). [Bibcode:1959JChPh.31.459A]

    Article  ADS  MathSciNet  Google Scholar 

  19. A. Rahman, Correlations in the motion of atoms in liquid argon. Phys. Rev. 136, A405–A411 (1964). [Bibcode:1964PhRv.136.405R]

    Article  ADS  Google Scholar 

  20. D.C. Rapaport, The art of molecular dynamics simulation (Cambridge University Press, Cambridge, 2004). ISBN 978-0-521-82568-9

    Book  Google Scholar 

  21. A.Z. Ashkezari, N.A. Jolfaei, N.A. Jolfaei, M. Hekmatifar, D. Toghraie, R. Sabetvand, S. Rostami, Calculation of the thermal conductivity of human serum albumin (HSA) with equilibrium/non-equilibrium molecular dynamics approaches. Comput. Methods Programs Biomed. 188, 105256 (2020)

    Article  Google Scholar 

  22. N.A. Jolfaei, N.A. Jolfaei, M. Hekmatifar, A. Piranfar, D. Toghraie, R. Sabetvand, S. Rostami, Investigation of thermal properties of DNA structure with precise atomic arrangement via equilibrium and non-equilibrium molecular dynamics approaches. Comput. Methods Programs Biomed. 185, 105169 (2020)

    Article  Google Scholar 

  23. R. Sabetvand, M.E. Ghazi, M. Izadifard, Studying temperature effects on electronic and optical properties of cubic CH3NH3SnI3 perovskite. J. Comput. Electron. 19, 70–79 (2020)

    Article  Google Scholar 

  24. L. Li, P. Ji, Y. Zhang, Molecular dynamics simulation of condensation on nanostructured surface in a confined space. Appl. Phys. A. 122, 496 (2016)

    Article  ADS  Google Scholar 

  25. F.F. Reuss, “Notice sur un nouvel effet de l’électricité galvanique” [Notice of a new effect of galvanic electricity]. Memoires de la Société Impériale des Naturalistes de Moscou 2, 327–337 (1809). [in French]

    Google Scholar 

  26. U. Bergmann, A. Di Cicco, P. Wernet, E. Principi, P. Glatzel, A. Nilsson, Nearest-neighbor oxygen distances in liquid water and ice observed by X-ray Raman based extended X-ray absorption fine structure. J. Chem. Phys. 127, 174504 (2007)

    Article  ADS  Google Scholar 

  27. B. Wang, W. Sheng, X. Peng, Int. J. Thermophys. (2009). https://doi.org/10.1007/s10765-009-0673-4

    Article  Google Scholar 

  28. S. Eiamsa-ard, K. Kiatkittipong, Int. J. Thermophys. (2019). https://doi.org/10.1007/s10765-019-2485-5

    Article  Google Scholar 

  29. S. Malekian, E. Fathi, N. Malekian et al., Int. J. Thermophys. (2018). https://doi.org/10.1007/s10765-018-2422-z

    Article  Google Scholar 

  30. M.J. Assael, C.F. Chen, I. Metaxa, W.A. Wakeham, Int. J. Thermophys. (2004). https://doi.org/10.1023/b:ijot.0000038494.22494.04

    Article  Google Scholar 

  31. G. Tertsinidou, M.J. Assael, W.A. Wakeham, Int. J. Thermophys. 36, 2 (2015). https://doi.org/10.1007/s10765-015-1856-9

    Article  Google Scholar 

  32. S. Nose, A unified formulation of the constant temperature molecular-dynamics methods. J. Chem. Phys. 81, 511–519 (1984). [Bibcode:1984JChPh.81]

    Article  ADS  Google Scholar 

  33. W.G. Hoover, Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A. 31, 1695–1697 (1985). [Bibcode:1985PhRvA.31.1695H]

    Article  ADS  Google Scholar 

  34. H.J.C. Berendsen, J.R. Grigera, T.P. Straatsma, The missing term in effective pair potentials. J. Phys. Chem. 91, 6269–6271 (1987)

    Article  Google Scholar 

  35. J.E. Lennard-Jones, On the determination of molecular fields. Proc. R. Soc. Lond. A 106, 463–477 (1924). [Bibcode:1924RSPSA.106.463J]

    Article  ADS  Google Scholar 

  36. K. Toukan, A. Rahman, Molecular-dynamics study of atomic motions in water. Phys. Rev. B. 31, 2643–2648 (1985). [Bibcode:1985PhRvB.31.2643T]

    Article  ADS  Google Scholar 

  37. A.C. Van Duin, S. Dasgupta, F. Lorant, W.A. Goddard, ReaxFF: a reactive force field for hydrocarbons. J. Phys. Chem. A. 105, 9396–9409 (2001). [Bibcode:2001JPCA.105.9396V]

    Article  Google Scholar 

  38. M.S. Daw, M.I. Baskes, Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29, 6443–6453 (1984)

    Article  ADS  Google Scholar 

  39. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995)

    Article  ADS  Google Scholar 

  40. S.J. Plimpton, A.P. Thompson, Computational aspects of many-body potentials. MRS Bull. 37, 513–521 (2012)

    Article  Google Scholar 

  41. W.M. Brown, P. Wang, S.J. Plimpton, A.N. Tharrington, Implementing molecular dynamics on hybrid high performance computers—short range forces. Comput. Phys. Commun. 182, 898–911 (2011)

    Article  ADS  Google Scholar 

  42. W.M. Brown, A. Kohlmeyer, S.J. Plimpton, A.N. Tharrington, Implementing molecular dynamics on hybrid high performance computers—particle–particle particle-mesh. Comput. Phys. Commun. 183, 449–459 (2012)

    Article  ADS  Google Scholar 

  43. A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO—the Open Visualization Tool. Modell. Simul. Mater. Sci. Eng. 18, 015012 (2009)

    Article  ADS  Google Scholar 

  44. G.N.I. Clark, C.D. Cappa, J.D. Smith, R.J. Saykally, T. Head-Gordon, The structure of ambient water. Mol. Phys. 108, 1415–1433 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Karimipour.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghani Dehkordi, K., Karimipour, A., Afrand, M. et al. The Electric Field and Microchannel Type Effects on H2O/Fe3O4 Nanofluid Boiling Process: Molecular Dynamics Study. Int J Thermophys 41, 132 (2020). https://doi.org/10.1007/s10765-020-02714-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-020-02714-8

Keywords

Navigation