Skip to main content
Log in

Soret, heat generation, radiation and porous effects on MHD free convection flow past an infinite plate with oscillating temperature

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The magnetohydrodynamic flow of a viscous incompressible fluid past an infinite vertical plate surrounded by a porous medium has been analytically investigated during natural convection. The heat and mass transfer characteristics are examined in the presence of heat generation, chemical reaction, thermal radiation, and Soret effect. An oscillating temperature of the plate is considered about a constant mean temperature. The Laplace transform technique is applied to solve the governing system of coupled partial differential equations. The concentration, velocity, penetration distance, skin-friction, Nusselt number, and Sherwood number results are obtained from the solutions and thoroughly discussed. The results exhibit that the velocity and the penetration distance enhance with an increase in Soret number, whereas the skin-friction decreases with increasing Soret number. The heat transfer rate enhances with the escalation of radiation parameter but diminishes with the increase of phase angle. It is also seen that the rate of mass transfer is occurring from fluid to the plate surface in the presence of Soret effect and surface temperature oscillations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Availability of data and materials

No data and material were generated.

Code availability

No software application or custom code is available.

References

  1. Jaluria Y. Design and optimization of thermal systems. Boca Raton: Taylor & Francis; 2020.

    Google Scholar 

  2. Soundalgekar VM. Unsteady forced and free convective flow past an infinite vertical porous plate with oscillating wall temperature and constant suction. Astrophys Space Sci. 1979;66:223–33.

    Article  Google Scholar 

  3. Soundalgekar VM, Shende SR. Unsteady forced and free convective MHD flow past an infinite vertical porous plate with constant suction and oscillatory wall temperature. Acta Phys Hung. 1980;48(4):359–68.

    Article  Google Scholar 

  4. Khan F, Narayan KA. Free convective flow through a porous medium bounded by an infinite vertical plate with oscillating temperature. Mech Res Commun. 1988;15(2):131–7.

    Article  Google Scholar 

  5. Takhar HS, Soundalgekar VM. Heat transfer in a flow past a semi-in-finite plate with oscillating temperature. Appl Sci Res. 1989;46:159–64.

    Article  Google Scholar 

  6. Harris SD, Elliott L, Ingham DB, Pop I. Transient free convection flow past a vertical flat plate subject to a sudden change in surface temperature. Int J Heat Mass Transf. 1998;41(2):357–72.

    Article  Google Scholar 

  7. Hossain MA. Simultaneous heat and mass transfer on oscillatory free convection boundary layer flow. Int J Energy Res. 1988;12:205–16.

    Article  CAS  Google Scholar 

  8. Hossain MA, Das SK, Pop I. Heat transfer response of MHD free convection flow along a vertical plate to surface temperature oscillations. Int J Non-Linear Mech. 1998;33:541–3.

    Article  Google Scholar 

  9. Das UN, Deka RK, Souldalgekar VM. Transient free convection flow past an infinite vertical plate with periodic temperature variation. J Heat Transf. 1999;121:1091–4.

    Article  Google Scholar 

  10. Hossain MA, Pop I, Rees DAS. The effect of time-periodic surface temperature oscillations on free convection from a vertical surface in a porous medium. Transp Porous Med. 2000;39:119–30.

    Article  CAS  Google Scholar 

  11. Li J, Ingham DB, Pop I. Natural convection from a vertical flat plate with a surface temperature oscillation. Int J Heat Mass Transf. 2001;44:2311–22.

    Article  Google Scholar 

  12. Jaiswal BS, Souldalgekar VM. Oscillating plate temperature effects on flow past an infinite vertical porous plate with constant suction and embedded in a porous medium. Heat Mass Transf. 2001;37:125–31.

    Article  Google Scholar 

  13. Saeid NH. Periodic free convection from vertical plate subjected to periodic surface temperature oscillations. Int J Therm Sci. 2004;43:569–74.

    Article  CAS  Google Scholar 

  14. Chaudhary RC, Jain A. Magnetohydrodynamic transient convection flow past a vertical surface embedded in a porous medium with oscillating temperature. Turk J Eng Env Sci. 2008;32:13–22.

    CAS  Google Scholar 

  15. Kempers LJTM. A thermodynamic theory of the Soret effect in a multicomponent liquid. J Chem Phys. 1989;90(11):6541–8.

    Article  CAS  Google Scholar 

  16. Kumar JB, Singh AK. Soret effects on free-convection and mass transfer flow in the stokes problem for a infinite vertical plate. Astrophys Space Sci. 1990;173:251–5.

    Article  Google Scholar 

  17. Benano-Melly LB, Caltagirone JP, Faissat B, Montel F, Costeseque P. Modeling Soret coefficient measurement experiments in porous media considering thermal and solutal convection. Int J Heat Mass Transf. 2001;44:1285–97.

    Article  CAS  Google Scholar 

  18. Abreu CRA, Alfradique MF, Telles S. A Boundary layer flows with Dufour and Soret effects: I: forced and natural convection. Chem Eng Sci. 2006;61:4282–9.

    Article  CAS  Google Scholar 

  19. Platten JK. The Soret effect: a review of recent experimental results. J Appl Mech. 2006;73:5–15.

    Article  CAS  Google Scholar 

  20. Gaikwad SN, Malashetty MS, Rama Prasad K. An analytical study of linear and nonlinear double diffusive convection in a fluid saturated anisotropic porous layer with Soret effect. Appl Math Model. 2009;33:3617–35.

    Article  Google Scholar 

  21. Pal D, Mondal H. MHD non-Darcy mixed convective diffusion of species over a stretching sheet embedded in a porous medium with non-uniform heat source/sink, variable viscosity and Soret effect. Commun Nonlinear Sci Numer Sim. 2012;17:672–84.

    Article  Google Scholar 

  22. Pal D, Talukdar B. Influence of fluctuating thermal and mass diffusion on unsteady MHD buoyancy-driven convection past a vertical surface with chemical reaction and Soret effects. Commun Nonlinear Sci Numer Sim. 2012;17:1597–614.

    Article  Google Scholar 

  23. Ahmed N. Soret and radiation effects on transient MHD free convection from an impulsively started infinite vertical plate. J Heat Transf. 2012;134:062701.

    Article  Google Scholar 

  24. Turkyilmazoglu M, Pop I. Soret and heat source effects on the unsteady radiative MHD free convection flow from an impulsively started infinite vertical plate. Int J Heat Mass Transf. 2012;55:7635–44.

    Article  Google Scholar 

  25. Prakash J, Bhanumathi D, Vijaya Kumar AG, Varma SVK. Diffusion-thermo and radiation effects on unsteady MHD flow through porous medium past an impulsively started infinite vertical plate with variable temperature and mass diffusion. Transp Porous Med. 2013;96:135–51.

    Article  CAS  Google Scholar 

  26. RamReddy C, Murthy PVSN, Chamkha AJ, Rashad AM. Soret effect on mixed convection flow in a nanofluid under convective boundary condition. Int J Heat Mass Transf. 2013;64:384–92.

    Article  Google Scholar 

  27. Ganesan P, Suganthi RK, Loganathan P. Thermophoresis particle deposition effects in a free convective doubly stratified medium over a vertical plate. Meccanica. 2014;49:659–72.

    Article  Google Scholar 

  28. Manglesh A, Gorla MG, Chand K. Soret and Hall Effect on heat and mass transfer in MHD free convective flow through a porous medium in a vertical porous channel. Proc. National Acad. Sci. India Sect. A: Phys. Sci. 2014;84(1):63–9. https://doi.org/10.1007/s40010-013-0105-5.

    Article  CAS  Google Scholar 

  29. Kameswaran PK, Narayana M, Shaw S, Sibanda P. Heat and mass transfer from an isothermal wedge in nanofluids with Soret effect. Eur Phys J Plus. 2014;129:154.

    Article  Google Scholar 

  30. Pishkar I, Ghasemi B, Raisi A, Aminossadati SM. Numerical study of unsteady natural convection heat transfer of Newtonian and non-Newtonian fluids in a square enclosure under oscillating heat flux. J Therm Anal Calorim. 2019;138:1697–710. https://doi.org/10.1007/s10973-019-08253-1.

    Article  CAS  Google Scholar 

  31. Ullah N, Nadeem S, Khan AU. Finite element simulations for natural convective flow of nanofluid in a rectangular cavity having corrugated heated rods. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09378-4.

    Article  Google Scholar 

  32. Ijaz M, Nadeem S, Ayub M, Mansoor S. Simulation of magnetic dipole on gyrotactic ferromagnetic fluid flow with nonlinear thermal radiation. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09856-9.

    Article  Google Scholar 

  33. Saha LK, Bala SK, Roy NC. Natural convection flow in a fluid-saturated non-Darcy porous medium within a complex wavy wall reactor. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09945-9.

    Article  Google Scholar 

  34. Lu S, He B, Gao D, Chen W, Li X. Numerical simulation of double-diffusive natural convection in an enclosure in the presence of magnetic field with heat-conducting partition using lattice Boltzmann method. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-10044-y.

    Article  Google Scholar 

  35. Biswas N, Manna NK, Chamkha AJ. Effects of half-sinusoidal nonuniform heating during MHD thermal convection in Cu–Al2O3/water hybrid nanofluid saturated with porous media. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-10109-y.

    Article  Google Scholar 

  36. Marneni N, Tippa S, Pendyala R. Ramp temperature and Dufour effects on transient MHD natural convection flow past an infinite vertical plate in a porous medium. Eur Phys J Plus. 2015;130:251. https://doi.org/10.1140/epjp/i2015-15251-9.

    Article  CAS  Google Scholar 

  37. Mizukami K. The leading edge effect in unsteady natural convection on a vertical plate with time-dependent surface temperature or heat flux. Int J Heat Mass Transf. 1977;20:981–9.

    Article  Google Scholar 

  38. Fetecau C, Ellahi R, Khan M, Shah NA. Combined porous and magnetic effects on some fundamental motions of Newtonian fluids over an infinite plate. J Porous Media. 2018;21(7):589–605. https://doi.org/10.1615/JPorMedia.v21.i7.20.

    Article  Google Scholar 

  39. Fetecau C, Narahari M. General solutions for hydromagnetic flow of viscous fluids between horizontal parallel plates through porous medium. J Eng Mech. 2020;146(6):04020053.

    Article  Google Scholar 

Download references

Acknowledgements

The first three authors greatly acknowledge the financial support from the Ministry of Higher Education (MOHE), Malaysia, under the Fundamental Research Grant Scheme (FRGS/1/2012/TKO1/UTP/02/06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marneni Narahari.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narahari, M., Tippa, S., Pendyala, R. et al. Soret, heat generation, radiation and porous effects on MHD free convection flow past an infinite plate with oscillating temperature. J Therm Anal Calorim 143, 2525–2543 (2021). https://doi.org/10.1007/s10973-020-10229-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10229-5

Keywords

Navigation