Skip to main content
Log in

Epoxy composites filled with boron nitride: cure kinetics and the effect of particle shape on the thermal conductivity

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermally conducting and electrically insulating materials have been prepared by filling an epoxy–thiol system with boron nitride (BN) particles of different shapes (platelets and agglomerates) and sizes (from 2 to 180 μm), and hence with different specific surface areas. The cure kinetics has been studied by differential scanning calorimetry in both non-isothermal and isothermal modes, and it has been shown that there is a systematic dependence of the cure kinetics on the BN content, the cure reaction generally being retarded by the addition of the BN particles. For filler loadings greater than about 30 vol%, the retardation of the cure, in both isothermal and non-isothermal mode, appears also to decrease as the specific surface area decreases. For the smallest (2 μm) platelets, which have a significantly higher specific surface area (10 m2 g−1), the retardation is particularly pronounced, and this aspect is rationalized in terms of the activation energy and frequency factor of the reaction. The thermal conductivity of the cured epoxy–thiol–BN composites has been measured using the transient hot bridge method and is found to increase in the usual way with increasing BN content for all the particle types and sizes. For the platelets, the thermal conductivity increases with increasing particle size, mirroring the effect of BN content on the cure kinetics. The agglomerates, though, give the highest values of thermal conductivity, contrary to what might be expected in the light of their specific surface areas. Scanning electron microscopy of the fracture surfaces of the cured composites has been used to show that the interface between epoxy matrix and filler particles is better for the agglomerates. This, together with the reduced interfacial area, explains their higher thermal conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Waldrop MM. The chips are down for Moore’s law. Nature. 2016;530:144–7. https://doi.org/10.1038/530144a.

    Article  CAS  PubMed  Google Scholar 

  2. Moore AL, Shi L. Emerging challenges and materials for thermal management of electronics. Mater Today. 2014;17:163–74. https://doi.org/10.1016/j.mattod.2014.04.003163.

    Article  CAS  Google Scholar 

  3. Xu X, Chen J, Zhou J, Li B. Thermal conductivity of polymers and their nanocomposites. Adv Mater. 2018;30:1705544. https://doi.org/10.1002/adma.201705544.

    Article  CAS  Google Scholar 

  4. Singh V, Bougher TL, Weathers A, Cai Y, Bi KD, Pettes MT, McMenamin SA, Lv W, Resler DP, Gattuso TR, Altman DH, Sandhage KH, Shi L, Henry A, Cola BA. High thermal conductivity of chain-oriented amorphous polythiophene. Nat Nanotechnol. 2014;9:384–90. https://doi.org/10.1038/NNANO.2014.44.

    Article  CAS  PubMed  Google Scholar 

  5. Kim GH, Lee D, Shanker A, Shao L, Kwon MS, Gidley D, Kim J, Pipe KP. High thermal conductivity in amorphous polymer blends by engineered interchain interactions. Nat Mater. 2014;14:295–300. https://doi.org/10.1038/NMAT4141.

    Article  PubMed  Google Scholar 

  6. Shanker A, Li C, Kim GH, Gidley D, Pipe KP, Kim J. High thermal conductivity in electrostatically engineered amorphous polymers. Sci Adv. 2017;3(7):e1700342. https://doi.org/10.1126/sciadv.1700342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Xu Y, Wang X, Zhou J, Song B, Jiang Z, Lee EMY, Huberman S, Gleason KK, Chen G. Molecular engineered conjugated polymer with high thermal conductivity. Sci Adv. 2018;4(3):eaar3031. https://doi.org/10.1126/sciadv.aar3031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Seshadri I, Esquenazi GL, Borca-Tasciuc T, Keblinski P, Ramanath G. Multifold increases in thermal conductivity of polymer nanocomposites through microwave welding of metal nanowire fillers. Adv Mater Interfaces. 2015;2:1500186. https://doi.org/10.1002/admi.201500186.

    Article  CAS  Google Scholar 

  9. Barako MT, Isaacson SG, Lian F, Pop E, Dauskardt RH, Goodson KE, Tice J. Dense vertically aligned copper nanowire composites as high performance thermal interface materials. ACS Appl Mater Interfaces. 2017;9:42067–74. https://doi.org/10.1021/acsami.7b12313.

    Article  CAS  PubMed  Google Scholar 

  10. Shen Z, Feng J. Highly thermally conductive composite films based on nanofibrillated cellulose in situ coated with a small amount of silver nanoparticles. ACS Appl Mater Interfaces. 2018;10:24193–200. https://doi.org/10.1021/acsami.8b07249.

    Article  CAS  PubMed  Google Scholar 

  11. Song H, Liu J, Liu B, Wu J, Cheng H-M, Kang F. Two-dimensional materials for thermal management applications. Joule. 2018;2:442–63. https://doi.org/10.1016/j.joule.2018.01.006.

    Article  CAS  Google Scholar 

  12. Rybak A, Gaska K, Kapusta C, Toche F, Salles V. Epoxy composites with ceramic core-shell fillers for thermal management in electrical devices. Polym Adv Technol. 2017;28:1676–82. https://doi.org/10.1002/pat.4038.

    Article  CAS  Google Scholar 

  13. Hou H, Dai W, Yan Q, Lv L, Alam FE, Yang M, Yao Y, Zeng X, Xu J-B, Yu J, Jiang N, Lin C-T. Graphene size-dependent modulation of graphene frameworks contributing to the superior thermal conductivity of epoxy composites. J Mater Chem A. 2018;6:12091–7. https://doi.org/10.1039/c8ta03937b.

    Article  CAS  Google Scholar 

  14. Hong J-P, Yoon S-W, Hwang T, Oh J-S, Hong S-C, Leeb Y, Nam J-D. High thermal conductivity epoxy composites with bimodal distribution of aluminum nitride and boron nitride fillers. Thermochim Acta. 2012;537:70–5. https://doi.org/10.1016/j.tca.2012.03.002.

    Article  CAS  Google Scholar 

  15. Rybak A, Jarosinski L, Gaska K, Kapusta C. Graphene nanoplatelet-silica hybrid epoxy composites as electrical insulation with enhanced thermal conductivity. Polym Compos. 2018;39:E1682–91. https://doi.org/10.1002/pc.24666.

    Article  CAS  Google Scholar 

  16. Wattanakul K, Manuspiya H, Yanumet N. Effective surface treatments for enhancing the thermal conductivity of BN-filled epoxy composite. J Appl Polym Sci. 2011;119:3234–43. https://doi.org/10.1002/app.

    Article  CAS  Google Scholar 

  17. Kim K, Kim M, Hwang Y, Kim J. Chemically modified boron nitride-epoxy terminated dimethylsiloxane composite for improving the thermal conductivity. Ceram Int. 2014;40:2047–56. https://doi.org/10.1016/j.ceramint.2013.07.117.

    Article  CAS  Google Scholar 

  18. Gaska K, Rybak A, Kapusta C, Sekula R, Siwek A. Enhanced thermal conductivity of epoxy-matrix composites with hybrid fillers. Polym Adv Technol. 2015;26:26–31. https://doi.org/10.1002/pat.3414.

    Article  CAS  Google Scholar 

  19. Chung S-L, Lin J-S. Thermal conductivity of epoxy resin composites filled with combustion synthesized h-BN particles. Molecules. 2016;21:670. https://doi.org/10.3390/molecules21050670.

    Article  CAS  PubMed Central  Google Scholar 

  20. Hu J, Huang Y, Zeng X, Li Q, Ren L, Sun R, Xu J-B, Wong C-P. Polymer composite with enhanced thermal conductivity and mechanical strength through orientation manipulating of BN. Compos Sci Technol. 2018;160:127–37. https://doi.org/10.1016/j.compscitech.2018.01.045.

    Article  CAS  Google Scholar 

  21. Hutchinson JM, Román F, Folch A. Epoxy-thiol systems filled with boron nitride for high thermal conductivity applications. Polymers. 2018;10:340. https://doi.org/10.3390/polym10030340.

    Article  CAS  PubMed Central  Google Scholar 

  22. Daneshmehr S, Román F, Hutchinson JM. The surface modification of boron nitride particles. J Thermal Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-09160-1.

    Article  Google Scholar 

  23. Rivers G, Rogalsky A, Lee-Sullivan P, Zhao BX. Thermal analysis of epoxy-based nanocomposites: have solvent effects been overlooked? J Thermal Anal Calorim. 2015;119:797–805. https://doi.org/10.1007/s10973-013-3613-2.

    Article  CAS  Google Scholar 

  24. CarboTherm Thermal Management Fillers; Product Data Sheet. Saint-Gobain Ceramic Materials. https://www.bn.saint-gobain.com/sites/imdf.bn.com/files/carbotherm-bn-thermal-fillers-ds_0.pdf. Accessed 29 Jan 2020.

  25. Firdaus SM, Mariatti M. Nano-sized boron nitride epoxy composites for underfill application: effect of diluent and filler loading. J Mater Sci Mater Electron. 2015;26:774–83. https://doi.org/10.1007/s10854-014-2463-4.

    Article  CAS  Google Scholar 

  26. Lim HS, Oh JW, Kim SY, Yoo M-J, Park S-D, Lee WS. Anisotropically alignable magnetic boron nitride platelets decorated with iron oxide nanoparticles. Chem Mater. 2013;25:3315–9. https://doi.org/10.1021/cm401488a.

    Article  CAS  Google Scholar 

  27. Wattanakul K, Manuspiya H, Nanumet N. The adsorption of cationic surfactants on BN surface: its effects on the thermal conductivity and mechanical properties of BN-epoxy composite. Coll Surf A Physicochem Eng Aspects. 2010;369:203–10. https://doi.org/10.1016/j.colsurfa.2010.08.021.

    Article  CAS  Google Scholar 

  28. Xu YS, Chung DDL. Increasing the thermal conductivity of boron nitride and aluminum nitride particle epoxy-matrix composites by particle surface treatments. Compos Interfaces. 2000;7:243–56. https://doi.org/10.1163/156855400750244969.

    Article  CAS  Google Scholar 

  29. Hutchinson JM, Román F, Cortés P, Calventus Y. Epoxy composites filled with boron nitride and aluminium nitride for improved thermal conductivity. Polimery. 2017;62:560–6. https://doi.org/10.14314/polimery.2017.560.

    Article  CAS  Google Scholar 

  30. Moradi S, Calventus Y, Román F, Hutchinson JM. Achieving high thermal conductivity in epoxy composites: effect of boron nitride particle size and matrix-filler interface. Polymers. 2019;11:1156. https://doi.org/10.3390/polym11071156.

    Article  CAS  PubMed Central  Google Scholar 

  31. THERMAL CLAD Insulated Metal Substrates. https://www.henkel-adhesives.com/es/en/products/thermal-management-materials/thermal-clad-insulated-metal-substrates.html. Accessed 29 Jan 2020.

  32. Hammerschmidt U, Meier V. New transient hot-bridge sensor to measure the thermal conductivity, thermal diffusivity, and volumetric specific heat. Int J Thermophys. 2006;27:840–65. https://doi.org/10.1007/s10765-006-0061-2.

    Article  CAS  Google Scholar 

  33. Isarn I, Ramis X, Ferrando F, Serra A. Thermoconductive thermosetting composites based on boron nitride fillers and thiol-epoxy matrices. Polymers. 2018;10:277. https://doi.org/10.3390/polym10030277.

    Article  CAS  PubMed Central  Google Scholar 

  34. Montserrat S, Román F, Hutchinson JM, Campos L. Analysis of the cure of epoxy based layered silicate nanocomposites: reaction kinetics and nanostructure development. J Appl Polym Sci. 2008;108:923–38. https://doi.org/10.1002/app.27297.

    Article  CAS  Google Scholar 

  35. Morancho JM, Ramis X, Fernandez-Francos X, Salla JM, Konuray O, Serra A. Curing and thermomechanical properties of off-stoichiometric anhydride-epoxy thermosets. J Thermal Anal Calorim. 2019;138:2865–72. https://doi.org/10.1007/s10973-019-08681-z.

    Article  CAS  Google Scholar 

  36. Kumar S, Samal SK, Mohanty S, Nayak SK. Curing kinetics of bio-based epoxy resin-toughened DGEBA epoxy resin blend: synthesis and characterization. J Thermal Anal Calorim. 2019;137:1567–78. https://doi.org/10.1007/s10973-019-08080-4.

    Article  CAS  Google Scholar 

  37. Isarn I, Massagués L, Ramis X, Serra A, Ferrando F. New BN-epoxy composites obtained by thermal latent cationic curing with enhanced thermal conductivity. Compos Part A. 2017;103:35–47. https://doi.org/10.1016/j.compositesa.2017.09.007.

    Article  CAS  Google Scholar 

  38. Bi Q, Hao L, Zhang Q, Wang P, Xu P, Ding Y. Study on the effect of amino-functionalized alumina on the curing kinetics of epoxy composites. Thermochim Acta. 2019;678:178302. https://doi.org/10.1016/j.tca.2019.178302.

    Article  CAS  Google Scholar 

  39. Barghamadi M. Kinetics and thermodynamics of isothermal curing reaction of epoxy-4,4′-diaminoazobenzene reinforced with nanosilica and nanoclay particles. Polym Compos. 2010;31:1442–8. https://doi.org/10.1002/pc.20930.

    Article  CAS  Google Scholar 

  40. Wu X, Zhao Z, Sun Y, Li H, Wang Y, Zhang C, Gong X, Wang Y, Yang X, Liu Y. Boron nitride nanoparticles with high specific surface area: preparation by a calcination method and application in epoxy resin. J Inorg Organomet Polym. 2017;27:1142–7. https://doi.org/10.1007/s10904-017-0540-x.

    Article  CAS  Google Scholar 

  41. Zhu BL, Ma J, Wu J, Yung KC, Xie CS. Study on the properties of the epoxy-matrix composites filled with thermally conductive AlN and BN ceramic particles. J Appl Polym Sci. 2010;118:2754–64. https://doi.org/10.1002/app.32673.

    Article  CAS  Google Scholar 

  42. Huang L, Zhu P, Li G, Zhou F, Lu D, Sun R, Wong C. Spherical and flake-like BN filled epoxy composites: morphological effect on the thermal conductivity, thermo-mechanical and dielectric properties. J Mater Sci Mater Electron. 2015;26:3564–72. https://doi.org/10.1007/s10854-015-2870-1.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Spanish Ministerio de Economia y Competitividad, Grant Number MAT2017-82849-C2-2-R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Hutchinson.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moradi, S., Calventus, Y., Román, F. et al. Epoxy composites filled with boron nitride: cure kinetics and the effect of particle shape on the thermal conductivity. J Therm Anal Calorim 142, 595–605 (2020). https://doi.org/10.1007/s10973-020-09743-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09743-3

Keywords

Navigation