Skip to main content
Log in

The surface modification of boron nitride particles

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The use of coupling agents to enhance the thermal conductivity of composites of epoxy and boron nitride (BN) has been investigated. Two types of BN particles, lightly aggregated platelets with an average size of 6 µm and agglomerates with an average size of 120 µm, have been used. Different proportions of these BN particles, up to a volume percentage of approximately 34%, were mixed with a stoichiometric epoxy–thiol system and cured either isothermally or non-isothermally. The cure kinetics was investigated by differential scanning calorimetry, and the thermal conductivity of isothermally fully cured samples was measured. The effect of surface treatment of the particles was extensively investigated, with respect to the characteristics of the particles themselves, the cure kinetics and the thermal conductivity of the cured composites. The BN particles were treated with a silane coupling agent, both with and without previously treating the BN with a sodium hydroxide solution. Infrared spectroscopy and thermogravimetric analysis were used to assess whether or not the silane had been attached to the BN particles, and the effect of the surface treatment on the cure kinetics was studied. Although the cure kinetics suggested that the surface treatment was more effective for the 6 µm particles than for the 120 µm agglomerates, it did not generally lead to an increase in the thermal conductivity, while scanning electron microscopy showed that the coupling agent was not attached to the BN particles. It is concluded that truly platelet-shaped particles are necessary for effective surface treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Chen H, Ginzburg VV, Yang J, Yang Y, Liu W, Huang Y, Du L, Chen B. Thermal conductivity of polymer-based composites: fundamentals and applications. Prog Polym Sci. 2016;59:41–85.

    Article  CAS  Google Scholar 

  2. Huang X, Jiang P, Tanaka T. A review of dielectric polymer composites with high thermal conductivity. IEEE Electr Insul Mag. 2011;27:8–16.

    Article  Google Scholar 

  3. Hutchinson JM, Román F, Folch A. Epoxy-thiol systems filled with boron nitride for high thermal conductivity applications. Polymers. 2018;10:340.

    Article  Google Scholar 

  4. Jegadheeswaran S, Sundaramahalingam A, Pohekar SD. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08297-3.

    Article  Google Scholar 

  5. Yung KC, Wang J, Yue TM. Thermal management for boron nitride filled metal core printed circuit board. J Compos Mater. 2008;42:2615–27.

    Article  CAS  Google Scholar 

  6. Zhu BL, Ma J, Wu J, Yung KC, Xie CS. Study on the properties of the epoxy-matrix composites filled with thermally conductive AlN and BN ceramic particles. J Appl Polym Sci. 2010;118:2754–64.

    Article  CAS  Google Scholar 

  7. Hong J-P, Yoon S-W, Hwang T, Oh J-S, Hong S-C, Lee Y, Nam J-D. High thermal conductivity epoxy composites with bimodal distribution of aluminum nitride and boron nitride fillers. Thermochim Acta. 2012;537:70–5.

    Article  CAS  Google Scholar 

  8. Kim K, Kim M, Hwang Y, Kim J. Chemically modified boron nitride-epoxy terminated dimethylsiloxane composite for improving the thermal conductivity. Ceram Int. 2014;40:2047–56.

    Article  CAS  Google Scholar 

  9. Donnay M, Tzavalas S, Logakis E. Boron nitride filled epoxy with improved thermal conductivity and dielectric breakdown strength. Compos Sci Technol. 2015;110:152–8.

    Article  CAS  Google Scholar 

  10. Chung S-L, Lin J-S. Thermal conductivity of epoxy resin composites filled with combustion synthesized h-BN particles. Molecules. 2016;21:670.

    Article  Google Scholar 

  11. Kim K, Kim M, Kim J. Thermal and mechanical properties of epoxy composites with a binary particle filler system consisting of aggregated and whisker type boron nitride particles. Compos Sci Technol. 2014;103:72–7.

    Article  CAS  Google Scholar 

  12. Gaska K, Rybak A, Kapusta C, Sekula R, Siwek A. Enhanced thermal conductivity of epoxy–matrix composites with hybrid fillers. Polym Adv Technol. 2015;26:26–31.

    Article  CAS  Google Scholar 

  13. Huang L, Zhu P, Li G, Zhou F, Lu D, Sun R, Wong C. Spherical and flake-like BN filled epoxy composites: morphological effect on the thermal conductivity, thermo-mechanical and dielectric properties. J Mater Sci: Mater Electron. 2015;26:3564–72.

    CAS  Google Scholar 

  14. Permal A, Devarajan M, Hung HL, Zahner T, Lacey D, Ibrahim K. Thermal and mechanical properties of epoxy composite filled with binary particle system of polygonal aluminum oxide and boron nitride platelets. J Mater Sci. 2016;51:7415–26.

    Article  CAS  Google Scholar 

  15. Hong J-P, Yoon S-W, Hwang T-S, Lee Y-K, Won S-H, Nam J-D. Interphase control of boron nitride/epoxy composites for high thermal conductivity. Korea-Aust Rheol J. 2010;22:259–64.

    Google Scholar 

  16. Wattanakul K, Manuspiya H, Yanumet N. Thermal conductivity and mechanical properties of BN-filled epoxy composite: effects of filler content, mixing conditions, and BN agglomerate size. J Compos Mater. 2011;45:1967–80.

    Article  CAS  Google Scholar 

  17. Moradi S, Calventus Y, Román F, Hutchinson JM. Achieving high thermal conductivity in epoxy composites: effect of boron nitride particle size and matrix-filler interface. Polymers. 2019;11:1156.

    Article  Google Scholar 

  18. Teng C-C, Ma C-CM, Chiou K-C, Lee T-M, Shih Y-F. Synergetic effect of hybrid boron nitride and multi-walled carbon nanotubes on the thermal conductivity of epoxy composites. Mater Chem Phys. 2011;126:722–8.

    Article  CAS  Google Scholar 

  19. Wattanakul K, Manuspiya H, Yanumet N. Effective surface treatments for enhancing the thermal conductivity of BN-filled epoxy composite. J Appl Polym Sci. 2011;119:3234–43.

    Article  CAS  Google Scholar 

  20. Hou J, Li G, Yang N, Qin L, Grami ME, Zhang Q, Wang N, Qu X. Preparation and characterization of surface modified boron nitride epoxy composites with enhanced thermal conductivity. RSC Adv. 2014;4:44282–90.

    Article  CAS  Google Scholar 

  21. Zhou W, Zuo J, Zhang X, Zhou A. Thermal, electrical, and mechanical properties of hexagonal boron nitride-reinforced epoxy composites. J Compos Mater. 2014;48:2517–26.

    Article  CAS  Google Scholar 

  22. Jang I, Shin K-H, Yang I, Kim H, Kim J, Kim W-H, Jeon S-W, Kim J-P. Enhancement of thermal conductivity of BN/epoxy composite through surface modification with silane coupling agents. Coll Surf A: Physicochem Eng Asp. 2017;518:64–72.

    Article  CAS  Google Scholar 

  23. Xu Y, Chung DDL. Increasing the thermal conductivity of boron nitride and aluminum nitride particle epoxy-matrix composites by particles surface treatments. Comput Interf. 2000;7:243–56.

    Article  CAS  Google Scholar 

  24. Fu J, Shi L, Zhang D, Zhong Q, Chen Y. Effect of nanoparticles on the performance of thermally conductive epoxy adhesives. Polym Eng Sci. 2010;50:1809–18.

    Article  CAS  Google Scholar 

  25. Tanaka T, Wang Z, Iizuka T, Kozako M, Ohki Y. High thermal conductivity epoxy/BN composites with sufficient dielectric breakdown strength. 2011 Annual report conference on electrical insulation and dielectric phenomena, Vols 1 and 2, IEEE, NY, USA, ISBN: 978-1-4577-0986-9, pp 691-694.

  26. Gu J, Zhang Q, Dang J, Xie C. Thermal conductivity epoxy resin composites filled with boron nitride. Polym Adv Technol. 2012;23:1025–8.

    Article  CAS  Google Scholar 

  27. Yu J, Huang X, Wu C, Wu X, Wang G, Jiang P. Interfacial modification of boron nitride nanoplatelets for epoxy composites with improved thermal properties. Polymer. 2012;53:471–80.

    Article  CAS  Google Scholar 

  28. Qu T, Yang N, Hou J, Li G, Yao Y, Zhang Q, He L, Wu D, Qu X. Flame retarding epoxy composites with poly(phosphazene-co-bisphenol A)-coated boron nitride to improve thermal conductivity and thermal stability. RSC Adv. 2017;7:6140–51.

    Article  CAS  Google Scholar 

  29. Kim K, Kim J. Fabrication of thermally conductive composite with surface modified boron nitride by epoxy wetting method. Ceram Int. 2014;40:5181–9.

    Article  CAS  Google Scholar 

  30. Ishida H. Surface treated boron nitride for forming a low viscosity high thermal conductivity polymer based boron nitride composition and method. US Patent 6160042, 2000.

  31. Hutchinson JM, Román F, Cortés P, Calventus Y. Epoxy composites filled with boron nitride and aluminium nitride for improved thermal conductivity. Polimery. 2017;62:560–6.

    Article  CAS  Google Scholar 

  32. Hammerschmidt U, Meier V. New Transient Hot-Bridge sensor to measure thermal conductivity, thermal diffusivity, and volumetric specific heat. Int J Thermophys. 2006;27:840–65.

    Article  CAS  Google Scholar 

  33. Fang L, Wu C, Qian R, Xie L, Yang K, Jiang P. Nano–micro structure of functionalized boron nitride and aluminum oxide for epoxy composites with enhanced thermal conductivity and breakdown strength. RSC Adv. 2014;4:21010–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially funded by the Spanish Ministerio de Economia y Competitividad, Grant Number MAT2017-82849-C2-2-R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Hutchinson.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daneshmehr, S., Román, F. & Hutchinson, J.M. The surface modification of boron nitride particles. J Therm Anal Calorim 143, 151–163 (2021). https://doi.org/10.1007/s10973-019-09160-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-09160-1

Keywords

Navigation