Skip to main content
Log in

Performance study of parabolic trough solar collector using hybrid nanofluids under Jordanian weather conditions

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The aim of this experimental and modeling work is to compare the thermal efficiency of two identical parabolic trough solar collector systems under weather conditions in Amman, Jordan, using a hybrid nanofluid of MWCNTs and Y2O3 with gum Arabic surfactant, and distilled water as the heat transfer fluid (HTF). One parabolic trough collector (PTC) uses a hybrid nanofluid at four different volumetric concentrations (0.01, 0.025, 0.05, and 0.1%), while the other uses water as a HTF. To prepare the nanofluids and check their stability, the thermal efficiency of the PTC was examined for different hybrid nanofluid concentrations compared to distilled water. The results showed that the 0.1% MWCNTs and Y2O3 hybrid nanofluid had the highest thermal efficiency of 44.24%, while water had a thermal efficiency of 19.32%. In addition, increasing the concentrations resulted in an improvement in the maximum optical efficiency. The maximum efficiency of 45% was obtained using 0.1% Vol. The Solidworks model was created according to experimental setup parameters and dimensions. The simulation was conducted under steady-state operating conditions, incorporating dimensional governing equations (continuity, momentum, and energy). A uniform heat flux was applied with two primary boundary conditions: the first one was at the receiver inlet where the fluid inlet temperature and mass flow rate were specified, whereas the second one was at the receiver outlet, where the outlet pressure was equivalent to the atmospheric pressure. The obtained experimental results have been compared using the Solidwork simulation model, which was created to determine the PTC’s outlet temperature and thermal efficiency. The comparative results demonstrated remarkable precision with an average outlet temperature of 0.03% and thermal efficiency of 0.9%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

A :

Area /m2

C :

Concentration ratio

C p :

Specific heat capacity/J kg K1

D :

Diameter/m

\(f\) :

Focal length/m

\({F}_{{\text{R}}}\) :

Heat removal factor

G :

Solar direct beam intensity/W m2

\(k\) :

Thermal conductivity/W m1 K1

L :

Length/m

\(\dot{m}\) :

Mass flow rate/kg s1

Q :

Heat flux/W

T :

Temperature/K

U :

Overall heat loss coefficient/W m2 K1

W :

Width/m

α :

Useful

γ :

Intercept factor

\(\Delta \) p :

Pressure drop/Pa

ΔT :

Temperature difference/K

ε :

Emittance

η :

Efficiency/%

θ :

Incident angle/°

\({\varnothing }_{{\text{rim}}}\) :

Rim angle/°

τ :

Transmittance

ρ :

Density/kg m3

\( \rho _{{\text{c}}} \) :

Reflectance

a:

Aperture

amb:

Ambient

ci:

Copper inner

co:

Copper outer

fm:

Fluid mean temperature

gi:

Glass cover inner

go:

Glass cover outer

in:

Inlet

L:

Loss

nf:

Nanofluid

np:

Nanoparticle

o:

Optical

out:

Outlet

s:

Solar

sun:

Sun

th:

Thermal

Useful:

Useful

GA:

Gum Arabic

HNF:

Hybrid nanofluid

HTF:

Heat transfer fluid

MWCNTs:

Multi-walled carbon nanotubes

PTC:

Parabolic trough collector

PTSCS:

Parabolic trough solar collector systems

TF:

Thermal fluid

Y2O3 :

Yttrium oxide

References

  1. Hoang AT, Nižetić S, Olcer AI, Ong HC, Chen W-H, Chong CT, et al. Impacts of COVID-19 pandemic on the global energy system and the shift progress to renewable energy: opportunities, challenges, and policy implications. Energy Policy. 2021;154:112322. https://doi.org/10.1016/j.enpol.2021.112322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Karunathilake H, Perera P, Ruparathna R, Hewage K, Sadiq R. Renewable energy integration into community energy systems: a case study of new urban residential development. J Clean Prod. 2018;173:292–307. https://doi.org/10.1016/j.jclepro.2016.10.067.

    Article  Google Scholar 

  3. Chekifi T, Boukraa M. Thermal efficiency enhancement of parabolic trough collectors: a review. J Therm Anal Calorim. 2022;147(20):10923–42. https://doi.org/10.1007/s10973-022-11369-6.

    Article  CAS  Google Scholar 

  4. Hachicha AA, Yousef BA, Said Z, Rodríguez I. A review study on the modeling of high-temperature solar thermal collector systems. Renew Sust Energ Rev. 2019;112:280–98. https://doi.org/10.1016/j.rser.2019.05.056.

    Article  Google Scholar 

  5. Sharma M, Jilte R. A review on passive methods for thermal performance enhancement in parabolic trough solar collectors. Int J Energy Res. 2021;45(4):4932–66. https://doi.org/10.1002/er.6212.

    Article  Google Scholar 

  6. Sepehrirad M, Aghaei A, Najafizadeh MM, Hassani JA. Investigating the effect of needle ribs on parabolic through solar collector filled with two-phase hybrid nanofluid. J Therm Anal Calorim. 2023. https://doi.org/10.1007/s10973-023-12772-3.

    Article  Google Scholar 

  7. Dezfulizadeh A, Aghaei A, Sheikhzadeh GA. Comprehensive 3E analyses of a parabolic trough collector equipped with an innovative combined twisted turbulator. Eng Anal Bound Elem. 2023;150:507–27. https://doi.org/10.1016/j.enganabound.2023.02.032.

    Article  Google Scholar 

  8. Pazarlıoğlu HK, Ekiciler R, Arslan K, Mohammed NAM. Exergetic, Energetic, and entropy production evaluations of parabolic trough collector retrofitted with elliptical dimpled receiver tube filled with hybrid nanofluid. Appl Therm Eng. 2023;223:120004. https://doi.org/10.1016/j.applthermaleng.2023.120004.

    Article  CAS  Google Scholar 

  9. Arun M, Barik D, Sridhar K. Experimental and CFD analysis of dimple tube parabolic trough solar collector (PTSC) with TiO2 nanofluids. J Therm Anal Calorim. 2022;147(24):14039–56. https://doi.org/10.1007/s10973-022-11572-5.

    Article  CAS  Google Scholar 

  10. Al-Oran O, Lezsovits F. Experimental study of thermal conductivity and viscosity of water-based MWCNT-Y2O3 hybrid nanofluid with surfactant. J Eng Thermophys. 2022;31(1):98–110. https://doi.org/10.1134/S1810232822010088.

    Article  Google Scholar 

  11. Saddouri I, Rejeb O, Semmar D, Jemni A. A comparative analysis of parabolic trough collector (PTC) using a hybrid nanofluid. J Therm Anal Calorim. 2023;148(18):9701–21. https://doi.org/10.1007/s10973-023-12342-7.

    Article  CAS  Google Scholar 

  12. Abed N, Afgan I, Cioncolini A, Iacovides H, Nasser A, Mekhail T. Thermal performance evaluation of various nanofluids with non-uniform heating for parabolic trough collectors. Case Stud Therm Eng. 2020;22:100769. https://doi.org/10.1016/j.csite.2020.100769.

    Article  Google Scholar 

  13. Xiong Q, Hajjar A, Alshuraiaan B, Izadi M, Altnji S, Shehzad SA. State-of-the-art review of nanofluids in solar collectors: a review based on the type of the dispersed nanoparticles. J Clean Prod. 2021. https://doi.org/10.1016/j.jclepro.2021.127528.

    Article  Google Scholar 

  14. Olia H, Torabi M, Bahiraei M, Ahmadi MH, Goodarzi M, Safaei MR. Application of nanofluids in thermal performance enhancement of parabolic trough solar collector: state-of-the-art. J Appl Sci. 2019;9(3):463. https://doi.org/10.3390/app9030463.

    Article  CAS  Google Scholar 

  15. Rehan MA, Ali M, Sheikh NA, Khalil MS, Chaudhary GQ, ur Rashid T, et al. Experimental performance analysis of low concentration ratio solar parabolic trough collectors with nanofluids in winter conditions. J Renew Energy. 2018;118:742–51. https://doi.org/10.1016/j.renene.2017.11.062.

    Article  CAS  Google Scholar 

  16. De los Rios MSB, Rivera-Solorio CI, García-Cuéllar AJ. Thermal performance of a parabolic trough linear collector using Al2O3/H2O nanofluids. J Renew Energy. 2018;122:665–73. https://doi.org/10.1016/j.renene.2018.01.094.

    Article  CAS  Google Scholar 

  17. Subramani J, Nagarajan P, Mahian O, Sathyamurthy R. Efficiency and heat transfer improvements in a parabolic trough solar collector using TiO2 nanofluids under turbulent flow regime. J Renew Energy. 2018;119:19–31. https://doi.org/10.1016/j.renene.2017.11.079.

    Article  CAS  Google Scholar 

  18. Subramani J, Nagarajan P, Wongwises S, El-Agouz S, Sathyamurthy R. Experimental study on the thermal performance and heat transfer characteristics of solar parabolic trough collector using Al2O3 nanofluids. Environ Prog Sustain. 2018;37(3):1149–59. https://doi.org/10.1002/ep.12767.

    Article  CAS  Google Scholar 

  19. Ajay K, Kundan L. Combined experimental and CFD investigation of the parabolic shaped solar collector utilizing nanofluid (CuO-H2O and SiO2-H2O) as a working fluid. J Eng. 2016. https://doi.org/10.1155/2016/5729576.

    Article  Google Scholar 

  20. Ayadi O, Hamdan M, Al-Far Y, Tayseer A, Al-Abbadi S, A’saf A et al., editors. Parametric Investigation of Nano-Fluids Utilization in Parabolic Trough Collector. In: 2021 12th International Renewable Engineering Conference (IREC); 2021: IEEE.

  21. Ding Y, Alias H, Wen D, Williams RA. Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). Int J Heat Mass Transf. 2006;49(1–2):240–50. https://doi.org/10.1016/j.ijheatmasstransfer.2005.07.009.

    Article  CAS  Google Scholar 

  22. Ouni M, Ladhar LM, Omri M, Jamshed W, Eid MR. Solar water-pump thermal analysis utilizing copper–gold/engine oil hybrid nanofluid flowing in parabolic trough solar collector: Thermal case study. Case Stud Therm Eng. 2022;30:101756. https://doi.org/10.1016/j.csite.2022.101756.

    Article  Google Scholar 

  23. Ekiciler R, Arslan K, Turgut O, Kurşun B. Effect of hybrid nanofluid on heat transfer performance of parabolic trough solar collector receiver. J Therm Anal Calorim. 2021;143:1637–54. https://doi.org/10.1007/s10973-020-09717-5.

    Article  CAS  Google Scholar 

  24. Alkathiri AA, Jamshed W, Eid MR, Bouazizi ML. Galerkin finite element inspection of thermal distribution of renewable solar energy in presence of binary nanofluid in parabolic trough solar collector. Alex Eng J. 2022;61(12):11063–76. https://doi.org/10.1016/j.aej.2022.04.036.

    Article  Google Scholar 

  25. Ekiciler R, Arslan K, Turgut O. Application of nanofluid flow in entropy generation and thermal performance analysis of parabolic trough solar collector: experimental and numerical study. J Ther Anal Calorim. 2023;11:1–20. https://doi.org/10.1007/s10973-023-12187-0.

    Article  CAS  Google Scholar 

  26. Allauddin U, Rafique MU, Malik O, Rashid O, Waseem A, King P, et al. Investigation of the thermo-hydraulic performance of a roughened parabolic trough collector. Appl Therm Eng. 2023;219:119523. https://doi.org/10.1016/j.applthermaleng.2022.119523.

    Article  CAS  Google Scholar 

  27. Esfe MH, Behbahani PM, Arani AA, Sarlak MR. Thermal conductivity enhancement of SiO2–MWCNT (85: 15%)–EG hybrid nanofluids. J Therm Anal Calorim. 2017;128(1):249–58. https://doi.org/10.1007/s10973-016-5893-9.

    Article  CAS  Google Scholar 

  28. Upadhyay BH, Patel AJ, Sadasivuni KK, Mistry JM, Ramana PV, Panchal H, Ponnamma D, Essa FA. Design, development and techno economic analysis of novel parabolic trough collector for low-temperature water heating applications. Case Studies Therm Eng. 2021;1(26):100978. https://doi.org/10.1016/j.csite.2021.100978.

    Article  Google Scholar 

  29. Abed N, Afgan I, Iacovides H, Cioncolini A, Khurshid I, Nasser A. Thermal-hydraulic analysis of parabolic trough collectors using straight conical strip inserts with nanofluids. J Nanomater. 2021;11(4):853. https://doi.org/10.3390/nano11040853.

    Article  CAS  Google Scholar 

  30. Pavlovic S, Bellos E, Stefanovic V, Tzivanidis C. Optimum geometry of parabolic trough collectors with optical and thermal criteria. Int Rev Appl Sci Eng. 2017;8(1):45–50. https://doi.org/10.1556/1848.2017.8.1.7.

    Article  Google Scholar 

  31. Al-Oran O, A’saf A, Lezsovits F. Experimental and modelling investigation on the effect of inserting ceria-based distilled water nanofluid on the thermal performance of parabolic trough collectors at the weather conditions of Amman: a case study. J Energy Reports. 2022;8:4155–69. https://doi.org/10.1016/j.egyr.2022.03.030.

    Article  Google Scholar 

  32. Holman JP. Experimental methods for engineers. 2012.

  33. Moraveji MK, Ardehali RM. CFD modeling (comparing single and two-phase approaches) on thermal performance of Al2O3/water nanofluid in mini-channel heat sink. Int Commun Heat Mass Transf. 2013;44:157–64. https://doi.org/10.1016/j.icheatmasstransfer.2013.02.012.

    Article  CAS  Google Scholar 

  34. Tzivanidis C, Bellos E, Korres D, Antonopoulos K, Mitsopoulos G. Thermal and optical efficiency investigation of a parabolic trough collector. Case Stud Therm Eng. 2015;6:226–37. https://doi.org/10.1016/j.csite.2015.10.005.

    Article  Google Scholar 

  35. Gupta N, Gupta SM, Sharma S. Preparation of stable metal/COOH-MWCNT hybrid nanofluid. J Materials Today: Proceedings. 2021;36:649–56. https://doi.org/10.1016/j.matpr.2020.04.492.

    Article  CAS  Google Scholar 

  36. Inc. URN. Nanomaterials Catalog. US Research Nanomaterials, Inc., Houston, TX, USA. 2021. https://www.us-nano.com/home.

  37. Rasih RA, Sidik NAC, Samion S. Recent progress on concentrating direct absorption solar collector using nanofluids. J Therm Anal Calorim. 2019;137(3):903–22. https://doi.org/10.1007/s10973-018-7964-6.

    Article  CAS  Google Scholar 

  38. Al-Oran O, Lezsovits F, Aljawabrah A. Exergy and energy amelioration for parabolic trough collector using mono and hybrid nanofluids. J Therm Anal Calorim. 2020;140(3):1579–96. https://doi.org/10.1007/s10973-020-09371-x.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Otabeh Al-Oran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Oran, O., Shaban, N.A., Manna, R. et al. Performance study of parabolic trough solar collector using hybrid nanofluids under Jordanian weather conditions. J Therm Anal Calorim 149, 3981–3998 (2024). https://doi.org/10.1007/s10973-024-12961-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-024-12961-8

Keywords

Navigation