Skip to main content
Log in

Erythromycin-excipients compatibility studies using the thermal analysis and dynamic thermal infrared spectroscopy coupled with chemometrics

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This study aims to characterize erythromycin (ERY) estolate by thermogravimetry analysis and differential scanning calorimetry. For such a purpose, compatibility testing has been conducted using binary mixtures of four excipients (magnesium stearate, sodium starch glycolate, povidone and mannitol). A comparison of simulated and experimental TG curves was made using Pearson’s correlation coefficient so as to determine possible incompatibilities by the formation of volatile thermal degradation products. (r2 of around 0.91 was found for mixtures of magnesium stearate and mannitol, i.e., there might be interactions.) Dynamic thermal FT-IR spectroscopy and multivariate curve resolution (MCR-ALS) were used to identify incompatibilities before the occurrence of mass loss observed due to the chemical decomposition found through the TG. Infrared pure profiles were obtained as a function of the temperature of each component, thus revealing that it is an important and promising tool for monitoring solid-state phase transformations. Thereby, this methodology confirms that ERY shows incompatibilities regarding magnesium stearate and mannitol, and compatibilities concerning povidone and sodium starch glycolate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gibson M. Pharmaceutical preformulation and formulation: a practical guide from candidate drug selection to commercial dosage form. 2nd ed. Boca Raton: CRC Press; 2001.

    Google Scholar 

  2. Veronez IP, Daniel JSP, Garcia JS, Trevisan MG. Characterization and compatibility study of desloratadine. J Therm Anal Calorim. 2014;115:2407–14.

    Article  CAS  Google Scholar 

  3. Fulias A, Vlase T, Vlase G, Doca N. Thermal behavior of cephalexin in different mixtures. J Therm Anal Calorim. 2010;99:987–92.

    Article  CAS  Google Scholar 

  4. Rosasco MA, Bonafede SL, Faudone SN, Segall AI. Compatibility study of tobramycin and pharmaceutical excipients using differential scanning calorimetry, FTIR, DRX, and HPLC. J Therm Anal Calorim. 2018;134:1929–41.

    Article  CAS  Google Scholar 

  5. Reis TA, Matos BN, Lima EM, Chaker JA, Gratieri T, Cunha-Filho MSS, Gelfuso GM. Oxaliplatin preformulation studies for the development of innovative topical drug delivery systems. J Therm Anal Calorim. 2017;130:1671–81.

    Article  CAS  Google Scholar 

  6. Attia AK, Abdel-Moety MM, Abdel-Hamid SG. Thermal analysis study of antihypertensive drug doxazosinmesilate. Arab J Chem. 2017;10:S334–S33838.

    Article  CAS  Google Scholar 

  7. Khanmohammadi M, Soleimani M, Morovvat F, Garmarudi AB, Khalafbeigi M, Ghasemi K. Simultaneous determination of paracetamol and codeine phosphate in tablets by TGA and chemometrics. Thermochim Acta. 2012;530:128–32.

    Article  CAS  Google Scholar 

  8. Risoluti R, Materazzi S, Sorrentino F, Maffei L, Caprari P. Thermogravimetric analysis coupled with chemometrics as a powerful predictive tool for beta-thalassemia screening. Talanta. 2016;159:425–32.

    Article  CAS  Google Scholar 

  9. Silva LAD, Teixeira FV, Serpa RC, Esteves NL, Santos RR, Lima EM, Cunha-Filho MSS, Araújo AAS, Taveira SF, Marreto RN. Evaluation of carvedilol compatibility with lipid excipients for the development of lipid-based drug delivery systems. J Therm Anal Calorim. 2016;123:2337–444.

    Article  CAS  Google Scholar 

  10. Brus J, Urbanova M, Sedenkova I, Brusova H. New perspectives of 19F MAS NMR in the characterization of amorphous forms of atorvastatin in dosage formulations. Int J Pharm. 2011;409:62–74.

    Article  CAS  Google Scholar 

  11. Qi M, Hong MH, Liu Y, Wang EF, Ren FZ, Ren GB. Estimating thermodynamic stability relationship of polymorphs of sofosbuvir. Cryst Growth Des. 2015;15:5061–7.

    Article  Google Scholar 

  12. Ferreira LT, Alarcon RT, Perpétuo GL, Bannach G. Investigation and characterization by TG/DTG–DTA and DSC of the fusion of Riboflavin, and its interaction with the antibiotic norfloxacin in the screening of cocrystal. J Therm Anal Calorim. 2019;136:581–8.

    Article  CAS  Google Scholar 

  13. Gohil KN, Patel PM, Patel NM. Application of analytical techniques in preformulation study: a review. Int J Pharm Biol Arch. 2011;2:1319–26.

    Google Scholar 

  14. Fernandes FHA, Almeida VE, Medeiros FD, Silva PCD, Simões MOS, Veras G, Medeiros ACD. Evaluation of compatibility between Schinopsisbrasiliensis Engler extract and pharmaceutical excipients using analytical techniques associated with chemometric tools. J Therm Anal Calorim. 2016;123:2531–42.

    Article  CAS  Google Scholar 

  15. Wesolowski M, Rojek B. Thermogravimetric detection of incompatibilities between atenolol and excipients using multivariate techniques. J Therm Anal Calorim. 2013;113:169–77.

    Article  CAS  Google Scholar 

  16. Rojek B, Suchacz B, Wesolowski M. Artificial neural networks as a supporting tool for compatibility study based on thermogravimetric data. Thermochim Acta. 2018;659:222–31.

    Article  CAS  Google Scholar 

  17. Calvo NL, Maggio RM, Kaufman TS. A dynamic thermal ATR-FTIR/chemometric approach to the analysis of polymorphic interconversions. Cimetidine as a model drug. J Pharm Biomed Anal. 2014;92:90–7.

    Article  CAS  Google Scholar 

  18. Sismotto M, Paschoal JAR, Reyes FGR. Aspectos analíticos e regulatórios na determinação de resíduos de macrolídeos em alimentos de origem animal por cromatografia líquida associada à espectrometria de massas. Quím Nova. 2013;36:449–61.

    Article  CAS  Google Scholar 

  19. Chepkwony HK, Dehouck P, Roets E, Hoogmartens J. Liquid chromatographic determination of erythromycins in fermentation broth. Chromatographia. 2001;53:89–92.

    Article  CAS  Google Scholar 

  20. Pendela M, Beni S, Haghedooren E, Van den Bossche L, Noszal B, Van Schepdael A, Hoogmartens J, Adams E. Combined use of liquid chromatography with mass spectrometry and nuclear magnetic resonance for the identification of degradation compounds in an erythromycin formulation. Anal Bioanal Chem. 2012;402:781–90.

    Article  CAS  Google Scholar 

  21. Cachet T, Delrue M, Paesen J, Busson R, Roets E, Hoogmartens J. Analysis of erythromycin estolate by liquid chromatography. J Pharm Biomed Anal. 1992;10:851–60.

    Article  CAS  Google Scholar 

  22. Lopes MS, Catelani TA, Carneiro ALCS, Garcia JS, Trevisan MG. Ketoconazole: compatibility with pharmaceutical excipients using DSC and TG techniques. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-019-09137-0.

    Article  Google Scholar 

  23. Brondi AM, Terra LA, Sabin GP, Garcia JS, Poppi RJ, Trevisan MG. Mapping the polymorphic forms of fexofenadine in pharmaceutical tablets using near infrared chemical imaging. J Neat Infrared Spectrosc. 2014;22:211–20.

    Article  CAS  Google Scholar 

  24. Marian E, Tita B, Jurca T, Fulias A, Vicas L, Tita D. Thermal Behaviour of erythromycin-active substance and tablets. Part 1. Kinetic study of the active substance under non-isothermal conditions. J Therm Anal Calorim. 2013;111:1025–31.

    Article  CAS  Google Scholar 

  25. Fujii K, Aoki M, Uekusa H. Solid-state hydration/dehydration of erythromycin A investigated by ab initio powder X-ray diffraction analysis: Stoichiometric and nonstoichiometric dehydrated hydrate. Cryst Grow Des. 2013;13:2060–6.

    Article  CAS  Google Scholar 

  26. Stephens VC. Erythromycin esters. United States Patent. United States, Eli Lilly and Company, Indianapolis, India; 1961. US2993833.

  27. Daniel JSP, Veronez IP, Rodrigues LL, Trevisan MG, Garcia JS. Risperidone—solid-state characterization and pharmaceutical compatibility using thermal and non-thermal techniques. Thermochim Acta. 2013;568:148–55.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge to Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). The authors thank Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcello G. Trevisan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daniel, J.S.P., Cruz, J.C., Catelani, T.A. et al. Erythromycin-excipients compatibility studies using the thermal analysis and dynamic thermal infrared spectroscopy coupled with chemometrics. J Therm Anal Calorim 143, 3127–3135 (2021). https://doi.org/10.1007/s10973-020-09691-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09691-y

Keywords

Navigation