Skip to main content
Log in

Oxaliplatin preformulation studies for the development of innovative topical drug delivery systems

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This paper presents experiments carried out to assess physicochemical characteristics of oxaliplatin (OXPt) and to determine its compatibility with the polymeric matrices with most relevance in development of topical drug delivery systems (DDS). Thermal analysis (DSC and DTG) associated with molecular, crystallographic and morphologic (optical microscopy) characterizations of the drug alone or associated with such polymeric matrices was conducted. OXPt could be classified as a class III drug according to BCS, i.e., is highly water soluble but low permeable. OXPt in solid state showed to be adequate for regular pharmaceutical manufacturing conditions, being stable even when exposed to heating and light. Among tested polymers, only chitosan of medium molecular mass showed to be incompatible with OXPt, with strong evidence of chemical decomposition and physical changes in drug-polymer samples. Low molecular mass chitosan, poloxamer 407 and polylactic-co-glycolic acid (PLGA) may be indicated for the development of innovative topical DDS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Clark JI, Greene JB, Clark AL, Dalal JS, Hofmeister CC. Phase I pilot study of oxaliplatin, infusional 5-FU, and cetuximab in recurrent or metastatic head and neck cancer. Med Oncol. 2013;30:358.

    Article  Google Scholar 

  2. Moehler M, Mahlberg R, Heinemann V, Obermannová R, Kubala E, Melichar B, Weinmann A, Scigalla P, Tesařová M, Janda P, Hédouin-Biville F, Mansoor W. Phase I study of orally administered S-1 in combination with epirubicin and oxaliplatin in patients with advanced solid tumors and chemotherapy-naïve advanced or metastatic esophagogastric cancer. Gastric Cancer. 2017;20:358–67.

    Article  CAS  Google Scholar 

  3. Gelfuso GM, Gratieri T, Souza JG, Thomazine JA, Lopez RF. The influence of positive or negative charges in the passive and iontophoretic skin penetration of porphyrins used in photodynamic therapy. Eur J Pharm Biopharm. 2011;77:249–56.

    Article  CAS  Google Scholar 

  4. Gratieri T, Kalia YN. Targeted local simultaneous iontophoresis of chemotherapeutics for topical therapy of head and neck cancers. Int J Pharm. 2014;460:24–7.

    Article  CAS  Google Scholar 

  5. Al-Dhubiab BE, Nair AB, Kumria R, Attimarad M, Harsha S. Formulation and evaluation of nano based drug delivery system for the buccal delivery of acyclovir. Colloids Surf B Biointerfaces. 2015;136:878–84.

    Article  CAS  Google Scholar 

  6. Abrantes CG, Duarte D, Reis CP. An overview of pharmaceutical excipients: safe or not safe? J Pharm Sci. 2016;S0022–3549:00447.

    Google Scholar 

  7. Li J-Q, Wang S-L, Xu F, Liub Z-Y, Li R. Therapeutic effectiveness of slow-release PLGA-oxaliplatin microsphere on human colorectal tumor-bearing mice. Anticancer Drugs. 2010;21:600–8.

    Article  CAS  Google Scholar 

  8. Xu YY, Du YZ, Yuan H, Liu LN, Niu YP, Hu FQ. Improved cytotoxicity and multidrug resistance reversal of chitosan based polymeric micelles encapsulating oxaliplatin. J Drug Target. 2011;19:344–53.

    Article  CAS  Google Scholar 

  9. Vivek R, Thangam R, Nipunbabu V, Ponraj T, Kannan S. Oxaliplatin-chitosan nanoparticles induced intrinsic apoptotic signaling pathway: a “smart” drug delivery system to breast cancer cell therapy. Int J Biol Macromol. 2014;65:289–97.

    Article  CAS  Google Scholar 

  10. Gratieri T, Gelfuso GM, Rocha EM, Sarmento VH, de Freitas O, Lopez RF. A poloxamer/chitosan in situ forming gel with prolonged retention time for ocular delivery. Eur J Pharm Biopharm. 2010;75:186–93.

    Article  CAS  Google Scholar 

  11. Gratieri T, Gelfuso GM, de Freitas O, Rocha EM, Lopez RF. Enhancing and sustaining the topical ocular delivery of fluconazole using chitosan solution and poloxamer/chitosan in situ forming gel. Eur J Pharm Biopharm. 2011;1:320–7.

    Article  Google Scholar 

  12. Py-Daniel KR, Namban JS, de Andrade LR, de Souza PE, Paterno LG, Azevedo RB, Soler MA. Highly efficient photodynamic therapy colloidal system based on chloroaluminum phthalocyanine/pluronic micelles. Eur J Pharm Biopharm. 2016;103:23–31.

    Article  CAS  Google Scholar 

  13. Matos BN, Oliveira PM, Reis TA, Gratieri T, Cunha-Filho M, Gelfuso GM. Development and validation of a simple and selective analytical HPLC method for the quantification of oxaliplatin. J Chem. 2015;2015:1–6.

    Article  Google Scholar 

  14. ICH. Q1B, photostability testing of new active substances and medicinal products. In Proceedings of the international conference on harmonization of technical requirements for registration of pharmaceuticals for human use, Geneva. 2005.

  15. Talvani A, Bahia MT, Sá-Barreto LCL, Lima EM, Cunha-Filho MSS. Carvedilol: decomposition kinetics and compatibility with pharmaceutical excipients. J Therm Anal Calorim. 2014;115:2501–6.

    Article  CAS  Google Scholar 

  16. Silva LAD, Cintra ER, Alonso ECP, Alves GL, Lima EM, Taveira SF, Cunha-Filho MSS, Marreto RN. Selection of excipients for the development of carvedilol loaded lipid-based drug delivery systems. J Therm Anal Calorim. 2017. doi:10.1007/s10973-017-6380-7.

    Google Scholar 

  17. FDA—US Food and Drug Administration. Draft guidance for industry, waiver of in vivo bioavailability and bioequivalence studies for immediate-release solid oral dosage forms based on a biopharmaceutics classification system. 2015. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM070246.pdf. Accessed 07 June 2016.

  18. Franzen U, Nguyen TT, Vermehren C, Gammelgaard B, Ostergaard J. Characterization of a liposome-based formulation of oxaliplatin using capillary electrophoresis: encapsulation and leakage. J Pharm Biomed Anal. 2011;55:16–22.

    Article  CAS  Google Scholar 

  19. Dahan A, Miller JM, Amidon GL. Prediction of solubility and permeability class membership: provisional BCS classification of the world’s top oral drugs. AAPS J. 2009;11:740–6.

    Article  CAS  Google Scholar 

  20. Screnci D, McKeage MJ, Galettis P, Hambley TW, Palmer BD, Baguley BC. Relationships between hydrophobicity, reactivity, accumulation and peripheral nerve toxicity of a series of platinum drugs. Br J Cancer. 2000;82:966–72.

    Article  CAS  Google Scholar 

  21. Kasim NA, Whitehouse M, Ramachandran C, Bermejo M, Lennernäs H, Hussain AS, Junginger HE, Stavchansky SA, Midha KK, Shah VP, Amidon GL. Molecular properties of WHO essential drugs and provisional biopharmaceutical classification. Mol Pharm. 2004;1:85–96.

    Article  CAS  Google Scholar 

  22. Tyagi P, Gahlot P, Kakkar R. Structural aspects of the anti-cancer drug oxaliplatin: a combined theoretical and experimental study. Polyhedron. 2008;27:3567–74.

    Article  CAS  Google Scholar 

  23. Tummala S, Kumar MNS, Pindiprolu SK. Improved anti-tumor activity of oxaliplatin by encapsulating in anti-DR5 targeted gold nanoparticles. Drug Deliv. 2016;23:3505–19.

    Article  CAS  Google Scholar 

  24. Pereira ED, Cerruti R, Fernandes E, Peña L, Saez V, Pinto JC, Ramón JA, Oliveira GE, Souza Júnior FG. Influence of PLGA and PLGA-PEG on the dissolution profile of oxaliplatin. Polimeros. 2016;26:137–43.

    Google Scholar 

  25. Jain A, Jain SK, Ganesh N, Barve J, Beg AM. Design and development of ligand-appended polysaccharidic nanoparticles for the delivery of oxaliplatin in colorectal cancer. Nanomedicine. 2010;6:179–90.

    Article  CAS  Google Scholar 

  26. Tummala S, Gowthamarajan K, Satish Kumar MN, Praveen TK, Yamjala K, Tripuraneni NS, Prakash A. Formulation and optimization of oxaliplatin immuno-nanoparticles using Box–Behnken design and cytotoxicity assessment for synergistic and receptor-mediated targeting in the treatment of colorectal cancer. Artif Cells Nanomed Biotechnol. 2016;44:1835–50.

  27. Qiu L, Yang L, Zhou H, Long M, Jiang W, Wang D, Zhang X. Encapsulation of oxaliplatin in nanostructured lipid carriers—preparation, physicochemical characterization and in vitro evaluation. Asian J Pharm Sci. 2012;7:352–8.

    Google Scholar 

  28. Zhang D, Zhang J, Jiang K, Li K, Cong Y, Pu S, Jin Y, Lin J. Preparation, characterisation and antitumour activity of β-, γ- and HP-β-cyclodextrin inclusion complexes of oxaliplatin. Spectrochim Acta A Mol Biomol Spectrosc. 2016;152:501–8.

    Article  CAS  Google Scholar 

  29. Bruck MA, Bau R, Noji M, Inagaki K, Kidani Y. The crystal structures and absolute configurations of the anti-tumor complexes Pt(oxalato)(1R,2R-cyclohexanediamine) and Pt(malonato)(1R,2R-cyclohexanediamine). Inorg Chim Acta. 1984;92:279–84.

    Article  CAS  Google Scholar 

  30. Johnstone TC. The crystal structure of oxaliplatin: a case of overlooked pseudo symmetry. Polyhedron. 2014;67:429–35.

    Article  CAS  Google Scholar 

  31. Ungar T. Characterization of nanocrystalline materials by X-ray line profile analysis. J Mater Sci. 2007;42:1584–93.

    Article  CAS  Google Scholar 

  32. Mote VD, Purushotham Y, Dole BN. Williamson–Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J Theor Appl Phys. 2012;6:1–8.

    Article  Google Scholar 

  33. Maximiano FP, Novack KM, Bahia MT, Sá-Barreto LL, Cunha-Filho MSS. Polymorphic screen and drug-excipient compatibility studies of the antichagasic benznidazole. J Therm Anal Calorim. 2011;106:819–24.

    Article  CAS  Google Scholar 

  34. Silva LA, Teixeira FV, Serpa RC, Esteves NL, Santos RR, Lima EM, Cunha-Filho MSS, Araújo AAS, Taveira SF, Marreto RN. Evaluation of carvedilol compatibility with lipid excipients for the development of lipid-based drug delivery systems. J Therm Anal Calorim. 2016;123:2337–44.

    Article  CAS  Google Scholar 

  35. Karolewicz B, Gajda M, Pluta J, Górniak A. Dissolution study and thermal analysis of fenofibrate–Pluronic F127 solid dispersions. J Therm Anal Calorim. 2016;125:751–7.

    Article  CAS  Google Scholar 

  36. Qu X, Wirsen A, Albertsson A-C. Effect of lactic/glycolic acid side chains on the thermal degradation kinetics of chitosan derivatives. Polymer. 2000;41:4841–7.

    Article  CAS  Google Scholar 

  37. Britto D, Campana-Filho SP. A kinetic study on the thermal degradation of N,N,N-trimethylchitosan. Polym Degrad Stab. 2004;84:353–61.

    Article  Google Scholar 

  38. Britto D, Campana-Filho SP. Kinetics of the thermal degradation of chitosan. Thermochim Acta. 2007;465:73–82.

    Article  Google Scholar 

  39. Ang LF, Por LY, Yam MF. Study on different molecular weights of chitosan as an immobilization matrix for a glucose biosensor. PLoS ONE. 2013;8:e70597.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The undergraduate students (B. N. Matos and T. A. Reis) have received grants from CAPES (Brazil). This research was supported by Brazilian agencies CNPq (Grant #470272/2013-9), DPP/FUB/UnB (Edital 01/2013) and FAP-DF (Grant #193.000.208/2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guilherme M. Gelfuso.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reis, T.A., Matos, B.N., Lima, E.M. et al. Oxaliplatin preformulation studies for the development of innovative topical drug delivery systems. J Therm Anal Calorim 130, 1671–1681 (2017). https://doi.org/10.1007/s10973-017-6413-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6413-2

Keywords

Navigation