Skip to main content
Log in

Exponential space-dependent heat generation impact on MHD convective flow of Casson fluid over a curved stretching sheet with chemical reaction

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The present article focuses on the effect of exponential space-dependent heat source on magneto-hydrodynamic Casson fluid flow over a curved stretching sheet along with chemical reaction and convective heat and mass flux boundary conditions. The equations that govern the flow are reduced from system of partial differential equations to system of ordinary differential equations with the assistance of similarity transformations, and after that, they are solved using the numerical technique Runge–Kutta–Fehlberg fourth–fifth-order method. The obtained numerical values are plotted through graphs for velocity, temperature and concentration profiles with various parameters, and the variations based on these plots are discussed. Here, it is incurred that the velocity and concentration fields increase with increasing curvature parameter, whereas temperature profile shows inverse relation. Also, increment of Casson parameter shows the significant change in all flow profiles. Both thermal Biot number and concentration Biot number have increasing impact on temperature and concentration profiles, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

\(a\) :

Stretching constant (m)

\(B_{0}\) :

Applied magnetic field (Tesla)

\({\text{Bi}}_{1}\) :

Thermal Biot number

\({\text{Bi}}_{2}\) :

Concentration Biot number

\(C\) :

Dimensional concentration (mol m−3)

\(C_{\text{f}}\) :

Concentration at the surface (mol m−3)

\(C_{{{\text{f}}_{\text{s}} }}\) :

Skin friction coefficient

\(C_{\infty }\) :

Ambient concentration (mol m−3)

\(D\) :

Diffusion coefficient (m2 s−1)

\(f'\) :

Dimensionless velocity

\(h_{1}\) :

Convective heat transfer coefficient (W m−2 K−1)

\(k_{\text{m}}\) :

Convective mass transfer coefficient (m s−1)

\(k^{*}\) :

Thermal conductivity (W m−1 K−1)

\({\text{Nu}}_{\text{s}}\) :

Local Nusselt number

\(p\) :

Pressure (Pa)

\(P\) :

Dimensionless pressure

\({ \Pr }\) :

Prandtl number

\(Q\) :

Heat source/sink parameter (J)

\(Q_{0}\) :

Space-dependent heat source (J)

\(R\) :

Dimensional radius of curvature

\(R^{*}\) :

Chemical reaction parameter

\({\text{Re}}_{\text{s}}\) :

Local Reynolds number

\(r,s\) :

Local coordinates

\({\text{Sc}}\) :

Schmidt number

\({\text{Sh}}_{\text{s}}\) :

Local Sherwood number

\(T\) :

Fluid temperature (K)

\(T_{\text{f}}\) :

Fluid temperature at the surface (K)

\(T_{\infty }\) :

Ambient fluid temperature (K)

\(q_{\text{w}}\) :

Wall heat flux (J)

\(q_{\text{m}}\) :

Wall mass flux (kg s−1 m−2)

\(u\) :

Velocity component along s-direction (m s−1)

\(v\) :

Velocity component along r-direction (m s−1)

\(\phi\) :

Dimensionless concentration

\(\theta\) :

Dimensionless temperature

\(\eta\) :

Independent coordinate

\(\nu\) :

Kinematic viscosity of the fluid (m2 s−1)

\(\mu\) :

Dynamic viscosity of the fluid (kg m−1 s−1)

\(\rho\) :

Density of the fluid (kg m−3)

\(\sigma\) :

Electrical conductivity of the fluid (S m−1)

\(\beta\) :

Casson parameter

\(\alpha\) :

Thermal diffusivity of the fluid (m2 s−1)

\(\kappa\) :

Dimensionless curvature parameter

\(\rho C_{\text{p}}\) :

Specific heat capacitance of the fluid (J kg−1 K−1)

\(\tau_{\text{rs}}\) :

Wall shear stress (N m−2)

\(\delta\) :

Dimensionless chemical reaction parameter

References

  1. Gorla RSR, Shanmugam K, Kumari M. Non-similar solutions for mixed convection in non-Newtonian fluids along horizontal surfaces in porous media. Transp Porous Media. 1997;28(3):319–34.

    CAS  Google Scholar 

  2. Chen C. Effect of viscous dissipation on heat transfer in a non-Newtonian liquid film over an unsteady stretching sheet. J Non-Newton Fluid Mech. 2006;135:128–35.

    CAS  Google Scholar 

  3. Javed T, Ali N, Abbas Z, Sajid M. Flow of an Eyring–Powell non-Newtonian fluid over a stretching sheet. Chem Eng Commun. 2013;200:327–36.

    CAS  Google Scholar 

  4. Shehzad SA, Qasim M, Alsaedi A, Hayat T, Alsaadi F. Radiative Maxwell fluid flow with variable thermal conductivity due to a stretching surface in a porous medium. J Aerosp Eng. 2014;27:04014023.

    Google Scholar 

  5. Bhatti MM, Rashidi MM. Effects of thermo-diffusion and thermal radiation of Williamson nanofluid over a porous shrinking/stretching sheet. J Mol Liq. 2016;221:567–73.

    CAS  Google Scholar 

  6. Sharma RP, Avinash K, Sandeep N, Makinde OD. Thermal radiation effect on non-Newtonian fluid flow over a stretched sheet of non-uniform thickness. Defect Diffus Forum. 2017;377:242–59.

    Google Scholar 

  7. Gireesha BJ, Rudraswamy NG, Shehzad SA, Kumar KG. Numerical analysis of MHD three-dimensional Carreau nanoliquid flow over bidirectionally moving surface. J Braz Soc Mech Sci Eng. 2017;39:5037–47.

    Google Scholar 

  8. Kumar R, Sood S, Shehzad SA, Sheikholeslami M. Radiative heat transfer study for flow of non-Newtonian nanofluid past a Riga plate with variable thickness. J Mol Liq. 2017;2017(248):143–52.

    Google Scholar 

  9. Sakiadis BC. Boundary layer behavior on continuous solid flat surface. AICHEJ. 1961;7:26–8.

    CAS  Google Scholar 

  10. Crane LJ. Flow past a stretching plate. J Appl Math Phys (ZAMP). 1970;21:645–7.

    Google Scholar 

  11. Sajid M, Ali N, Javed T, Abbas Z. Stretching a curved surface in a viscous fluid. Chin Phys Lett. 2010;27:024703–4.

    Google Scholar 

  12. Abbas Z, Naveed M, Sajid M. Hydromagnetic slip flow of nanofluid over a curved stretching surface with heat generation and thermal radiation. J Mol Liq. 2016;215:756–62.

    CAS  Google Scholar 

  13. Hayat T, Saifc RS, Ellahi R, Muhammad T, Ahmad B. Numerical study of boundary-layer flow due to a nonlinear curved stretching sheet with convective heat and mass conditions. Results Phys. 2017;7:2601–6.

    Google Scholar 

  14. Hayat T, Ayub S, Alsaedi A. Homogeneous-heterogeneous reactions in curved channel with porous medium. Results Phys. 2018;9:1455–61.

    Google Scholar 

  15. Ahmad S, Nadeem S, Muhammad N. Boundary layer flow over a curved surface imbedded in porous medium. Commun Theor Phys. 2019;71:344.

    CAS  Google Scholar 

  16. Animasaun IL, Adebile EA, Fagbade AI. Casson fluid flow with variable thermo-physical property along exponentially stretching sheet with suction and exponentially decaying internal heat generation using the homotopy analysis method. J Niger Math Soc. 2016;35:1–17.

    Google Scholar 

  17. Mahanthesh B, Gireesha BJ, Prasannakumara BC, Sampath Kumar PB. Magneto-Thermo-Marangoni convective flow of Cu–H2O nanoliquid past an infinite disk with particle shape and exponential space based heat source effects. Results Phys. 2017;7:2990–6.

    Google Scholar 

  18. Zia QM, Ullah I, Waqas M, Alsaedi A, Hayat T. Cross diffusion and exponential space dependent heat source impacts in radiated three-dimensional (3D) flow of Casson fluid by heated surface. Results Phys. 2018;8:1275–82.

    Google Scholar 

  19. Kumar A, Reddy JVR, Sugunamma V, Sandeep N. Impact of cross diffusion on MHD viscoelastic fluid flow past a melting surface with exponential heat source. Multidiscip Model Mater Struct. 2018. https://doi.org/10.1108/MMMS-12-2017-0151.

    Article  Google Scholar 

  20. Jiaqiang E, Zhao X, Liu H, Chen J, Zuo W, Peng Q. Field synergy analysis for enhancing heat transfer capability of a novel narrow-tube closed oscillating heat pipe. Appl Energy. 2016;175:218–28.

    Google Scholar 

  21. Jiaqiang E, Han D, Deng Y, Zuo W, Qian C, Wu G, Peng Q, Zhang Z. Performance enhancement of a baffle-cut heat exchanger of exhaust gas recirculation. Appl Therm Eng. 2018;134:86–94.

    Google Scholar 

  22. Jiaqiang E, Zhang Z, Tu Z, Zuo W, Hu W, Han D, Jin Y. Effect analysis on flow and boiling heat transfer performance of cooling water-jacket of bearing in the gasoline engine turbocharger. Appl Therm Eng. 2018;130:754–66.

    Google Scholar 

  23. Jomekian A, Bazooyar B, Poormohammadian SJ, Darvishi P. A modified non-equilibrium lattice fluid model based on corrected fractional free volume of polymers for gas solubility prediction. Korean J Chem Eng. 2019;36:2047–59.

    CAS  Google Scholar 

  24. Shi E, Zang X, Jiang C, Mohammadpourfard M. Entropy generation analysis for thermomagnetic convection of paramagnetic fluid inside a porous enclosure in the presence of magnetic quadrupole field. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08556-3.

    Article  Google Scholar 

  25. Pal D, Mondal H. Effects of Soret Dufour, chemical reaction and thermal radiation on MHD non-Darcy unsteady mixed convective heat and mass transfer over a stretching sheet. Commun Nonlinear Sci Numer Simul. 2011;16:1942–58.

    Google Scholar 

  26. Hayat T, Rashid M, Imtiaz M, Alsaedi A. MHD convective flow due to a curved surface with thermal radiation and chemical reaction. J Mol Liq. 2017;225:482–9.

    CAS  Google Scholar 

  27. Gireesha BJ, Archana M, Mahanthesh B, Prasannakumara BC. Exploration of activation energy and binary chemical reaction effects on nano Casson fluid flow with thermal and exponential space-based heat source. Multidiscip Model Mater Struct. 2019;15:227–45.

    Google Scholar 

  28. Eldabe NTM, Saddeck G, El-Sayed AF. Heat transfer of MHD non-Newtonian Casson fluid flow between two rotating cylinders. Mech Mech Eng. 2001;5:237–51.

    Google Scholar 

  29. Mustafa M, Hayat T, Pop I, Aziz A. Unsteady boundary layer flow of a Casson fluid due to an impulsively started moving flat plate. Heat Transf Asian Res. 2011;6:563–76.

    Google Scholar 

  30. Nadeem S, Rizwan UH, Lee C. MHD flow of a Casson fluid over an exponentially shrinking sheet. Sci Iran. 2012;19:1550–3.

    Google Scholar 

  31. Shehzad SA, Hayat T, Alsaedi A. Three-dimensional MHD flow of Casson fluid in porous medium with heat generation”. J Appl Fluid Mech. 2016;9:215–23.

    Google Scholar 

  32. Gireesha BJ, Archana M, Gorla RSR, Makinde OD. MHD three dimensional double diffusive flow of Casson nanofluid with buoyancy forces and nonlinear thermal radiation over a stretching surface. Int J Numer Methods Heat Fluid Flow. 2017;12:2858–78.

    Google Scholar 

  33. Ghadikolaei SS, Hosseinzadeh K, Ganji DD, Jafari B. Nonlinear thermal radiation effect on magneto Casson nanofluid flow with Joule heating effect over an inclined porous stretching sheet. Case Stud Thermal Eng. 2018;12:176–87.

    Google Scholar 

  34. Sheikholeslami M. New computational approach for exergy and entropy analysis of nanofluid under the impact of Lorentz force through a porous media. Comput Methods Appl Mech Eng. 2019;344:319–33.

    Google Scholar 

  35. Sheikholeslami M. Finite element method for PCM solidification in existence of CuO nanoparticles. J Mol Liq. 2018;265:347–55.

    CAS  Google Scholar 

  36. Sheikholeslami M, Rezaeianjouybari B, Darzi M, Shafee A, Li Z, Nguyen TK. Application of nano-refrigerant for boiling heat transfer enhancement employing an experimental study. Int J Heat Mass Transf. 2019;141:974–80.

    CAS  Google Scholar 

  37. Sheikholeslami M, Haq RU, Shafee A, Li Z, Elaraki YG, Tlili I. Heat transfer simulation of heat storage unit with nanoparticles and fins through a heat exchanger. Int J Heat Mass Transf. 2019;135:470–8.

    Article  CAS  Google Scholar 

  38. Sheikholeslami M, Haq RU, Shafee A, Li Z. Heat transfer behavior of nanoparticle enhanced PCM solidification through an enclosure with V shaped fins. Int J Heat Mass Transf. 2019;130:1322–42.

    Article  CAS  Google Scholar 

  39. Sheikholeslami M, Jafaryar M, Li Z. Nanofluid turbulent convective flow in a circular duct with helical turbulators considering CuO nanoparticles. Int J Heat Mass Transf. 2018;124:980–9.

    CAS  Google Scholar 

  40. Sheikholeslami M, Ghasemi A. Solidification heat transfer of nanofluid in existence of thermal radiation by means of FEM. Int J Heat Mass Transf. 2018;123:418–31.

    CAS  Google Scholar 

  41. Sheikholeslami M, Seyednezhad M. Simulation of nanofluid flow and natural convection in a porous media under the influence of electric field using CVFEM. Int J Heat Mass Transf. 2018;120:772–81.

    CAS  Google Scholar 

  42. Sheikholeslami M, Rokni HB. Numerical simulation for impact of Coulomb force on nanofluid heat transfer in a porous enclosure in presence of thermal radiation. Int J Heat Mass Transf. 2018;118:823–31.

    CAS  Google Scholar 

  43. Sheikholeslami M, Shehzad SA. Numerical analysis of Fe3O4–H2O nanofluid flow in permeable media under the effect of external magnetic source. Int J Heat Mass Transf. 2018;118:182–92.

    CAS  Google Scholar 

  44. Sheikholeslami M, Sadoughi MK. Simulation of CuO–water nanofluid heat transfer enhancement in presence of melting surface. Int J Heat Mass Transf. 2018;116:909–19.

    CAS  Google Scholar 

  45. Sheikholeslami M, Rokni HB. Simulation of nanofluid heat transfer in presence of magnetic field: a review. Int J Heat Mass Transf. 2017;115:1203–33.

    CAS  Google Scholar 

  46. Sheikholeslami M, Hayat T, Alsaedi A. On simulation of nanofluid radiation and natural convection in an enclosure with elliptical cylinders. Int J Heat Mass Transf. 2017;115:981–91.

    CAS  Google Scholar 

  47. Sheikholeslami M, Shehzad SA. CVFEM for influence of external magnetic source on Fe3O4-H2O nanofluid behavior in a permeable cavity considering shape effect. Int J Heat Mass Transf. 2017;115:180–91.

    CAS  Google Scholar 

  48. Sheikholeslami M, Seyednezhad M. Nanofluid heat transfer in a permeable enclosure in presence of variable magnetic field by means of CVFEM. Int J Heat Mass Transf. 2017;114:1169–80.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. J. Gireesha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagaraja, B., Gireesha, B.J. Exponential space-dependent heat generation impact on MHD convective flow of Casson fluid over a curved stretching sheet with chemical reaction. J Therm Anal Calorim 143, 4071–4079 (2021). https://doi.org/10.1007/s10973-020-09360-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09360-0

Keywords

Navigation