Skip to main content
Log in

Entropy generation analysis for thermomagnetic convection of paramagnetic fluid inside a porous enclosure in the presence of magnetic quadrupole field

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The entropy generation characteristics for thermomagnetic convection in a porous cavity filled with paramagnetic air in the presence of a magnetic quadrupole field are investigated numerically using a finite volume method. The vertical walls of the porous cavity are maintained at different temperatures, whereas the horizontal walls are insulated. The Darcy–Brinkman–Forchheimer model is used for mathematical formulation of the fluid flow in porous media. Thermal, frictional and total entropy generation and Bejan number for a selected range of magnetic force number (γ = 1–100), Darcy number (Da = 5 × 10−4–5 × 10−2) and Rayleigh number (Ra = 104–106) are examined for both cases: (1) with gravity and (2) without gravity. The results indicate that the magnetic field had little or no effect on the total entropy generation for the lower values of Darcy number and the process is dominated by the heat transfer irreversibility. In contrast, the magnetic force provokes various irreversibilities to rise as a result of improved convection at higher Darcy numbers, and the irreversibility is dominated by the viscous effects. This work may give an insight into the design-related concept of entropy generation for various thermal systems and clarifying energy loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

b :

Magnetic flux density (T)

b 0 :

Reference magnetic flux density, b0 = Br (T)

B :

Dimensionless magnetic flux

Be :

Bejan number

Br :

Magnetic flux density of permanent magnets (T)

Da :

Darcy number

g :

Gravitational acceleration (m s−2)

H :

Magnetic field intensity

k :

Thermal conductivity (W m−1 K−1)

L :

Length of the enclosure (m)

p :

Pressure (Pa)

P :

Dimensionless pressure

Pr :

Prandtl number

Ra :

Rayleigh number

S :

Dimensionless entropy generation

T :

Temperature (K)

u, v :

Velocity components (m s−1)

U, V :

Dimensionless velocity components

x, y :

Cartesian coordinates (m)

X, Y :

Dimensionless Cartesian coordinates

\(\alpha\) :

Thermal diffusivity (m s−1)

\(\beta\) :

Thermal expansion coefficient (K−1)

\(\gamma\) :

Dimensionless magnetic strength parameter

κ :

Permeability (m2)

θ :

Dimensionless temperature, \((T - T_{ 0} )/(T_{\text{h}} - T_{\text{c}} )\)

\(\mu_{\text{m}}\) :

Magnetic permeability (H m−1)

\(\nu\) :

Kinematic viscosity (m2 s−1)

ε :

Porosity

\(\rho\) :

Density (kg m−3)

\(\mu_{\text{f}}\) :

Dynamics viscosity (kg m−1 s−1)

\(\sigma\) :

Electrical conductivity (Ω−1 m−1)

\(\phi\) :

Irreversibility distribution ratio

\(\chi\) :

Mass magnetic susceptibility (m3 kg−1)

\(\varphi_{\text{m}}\) :

Scalar magnetic potential

0:

Reference value

av:

Spatial average

c:

Cold

h:

Hot

total:

Summation over the domain

θ:

Heat transfer

ψ:

Fluid friction

References

  1. Torabi M, Karimi N, Peterson GP, Yee S. Challenges and progress on the modelling of entropy generation in porous media: A review. Int J Heat Mass Transf. 2017;114:31–46. https://doi.org/10.1016/j.ijheatmasstransfer.2017.06.021.

    Article  Google Scholar 

  2. Peng Q, E J, Chen J, Zuo W, Zhao X, Zhang Z. Investigation on the effects of wall thickness and porous media on the thermal performance of a non-premixed hydrogen fueled cylindrical micro combustor. Energy Convers Manag. 2018;155:276–86. https://doi.org/10.1016/j.enconman.2017.10.095.

    Article  CAS  Google Scholar 

  3. Bejan A. Flows in environmental fluids and porous media. Int J Energy Res. 2003;27(9):825–46. https://doi.org/10.1002/er.913.

    Article  Google Scholar 

  4. Siavashi M, Rasam H, Izadi A. Similarity solution of air and nanofluid impingement cooling of a cylindrical porous heat sink. J Therm Anal Calorim. 2018;135(2):1399–415. https://doi.org/10.1007/s10973-018-7540-0.

    Article  CAS  Google Scholar 

  5. Sivasankaran S, Do Y, Sankar M. Effect of discrete heating on natural convection in a rectangular porous enclosure. Transp Porous Media. 2011;86(1):261–81.

    Article  CAS  Google Scholar 

  6. E J, Han D, Qiu A, Zhu H, Deng Y, Chen J, et al. Orthogonal experimental design of liquid-cooling structure on the cooling effect of a liquid-cooled battery thermal management system. Appl Therm Eng. 2018;132:508–20. https://doi.org/10.1016/j.applthermaleng.2017.12.115.

    Article  Google Scholar 

  7. Sheikholeslami M, Ganji DD. Numerical analysis of nanofluid transportation in porous media under the influence of external magnetic source. J Mol Liq. 2017;233:499–507. https://doi.org/10.1016/j.molliq.2017.03.050.

    Article  CAS  Google Scholar 

  8. Alizadeh R, Karimi N, Mehdizadeh A, Nourbakhsh A. Analysis of transport from cylindrical surfaces subject to catalytic reactions and non-uniform impinging flows in porous media. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08120-z.

    Article  Google Scholar 

  9. Jiaqiang E, Jin Y, Deng Y, Zuo W, Zhao X, Han D, et al. wetting models and working mechanisms of typical surfaces existing in nature and their application on superhydrophobic surfaces: a review. Adv Mater Interfaces. 2018. https://doi.org/10.1002/admi.201701052.

    Article  Google Scholar 

  10. Chamkha AJ, Rashad AM, Armaghani T, Mansour MA. Effects of partial slip on entropy generation and MHD combined convection in a lid-driven porous enclosure saturated with a Cu–water nanofluid. J Therm Anal Calorim. 2018;132(2):1291–306. https://doi.org/10.1007/s10973-017-6918-8.

    Article  CAS  Google Scholar 

  11. Hunt G, Karimi N, Torabi M. Two-dimensional analytical investigation of coupled heat and mass transfer and entropy generation in a porous, catalytic microreactor. Int J Heat Mass Transf. 2018;119:372–91. https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.118.

    Article  CAS  Google Scholar 

  12. Anandalakshmi R, Basak T. Analysis of natural convection via entropy generation approach in porous rhombic enclosures for various thermal aspect ratios. Int J Heat Mass Trans. 2013;64:224–44. https://doi.org/10.1016/j.ijheatmasstransfer.2013.03.067.

    Article  Google Scholar 

  13. Govone L, Torabi M, Hunt G, Karimi N. Non-equilibrium thermodynamic analysis of double diffusive, nanofluid forced convection in catalytic microreactors with radiation effects. Entropy. 2017. https://doi.org/10.3390/e19120690.

    Article  Google Scholar 

  14. Torabi M, Peterson GP. Effects of velocity slip and temperature jump on the heat transfer and entropy generation in micro porous channels under magnetic field. Int J Heat Mass Transf. 2016;102:585–95. https://doi.org/10.1016/j.ijheatmasstransfer.2016.06.080.

    Article  Google Scholar 

  15. Armaghani T, Rashad AM, Vahidifar O, Mishra SR, Chamkha AJ. Effects of discrete heat source location on heat transfer and entropy generation of nanofluid in an open inclined L-shaped cavity. Int J Numer Method H. 2018;1:21. https://doi.org/10.1108/hff-07-2018-0412.

    Article  Google Scholar 

  16. Torabi M, Torabi M, Ghiaasiaan SM, Peterson GP. The effect of Al2O3–water nanofluid on the heat transfer and entropy generation of laminar forced convection through isotropic porous media. Int J Heat Mass Transf. 2017;111:804–16. https://doi.org/10.1016/j.ijheatmasstransfer.2017.04.041.

    Article  CAS  Google Scholar 

  17. Alizadeh R, Karimi N, Arjmandzadeh R, Mehdizadeh A. Mixed convection and thermodynamic irreversibilities in MHD nanofluid stagnation-point flows over a cylinder embedded in porous media. J Therm Anal Calorim. 2018;135(1):489–506. https://doi.org/10.1007/s10973-018-7071-8.

    Article  CAS  Google Scholar 

  18. Akbarzadeh M, Rashidi S, Karimi N, Omar N. First and second laws of thermodynamics analysis of nanofluid flow inside a heat exchanger duct with wavy walls and a porous insert. J Therm Anal Calorim. 2018;135(1):177–94. https://doi.org/10.1007/s10973-018-7044-y.

    Article  CAS  Google Scholar 

  19. Hajatzadeh Pordanjani A, Aghakhani S, Karimipour A, Afrand M, Goodarzi M. Investigation of free convection heat transfer and entropy generation of nanofluid flow inside a cavity affected by magnetic field and thermal radiation. J Therm Anal Calorim. 2019;1:21. https://doi.org/10.1007/s10973-018-7982-4.

    Article  CAS  Google Scholar 

  20. Hunt G, Torabi M, Govone L, Karimi N, Mehdizadeh A. Two-dimensional heat and mass transfer and thermodynamic analyses of porous microreactors with Soret and thermal radiation effects—an analytical approach. Chem Eng Process Process Intensif. 2018;126:190–205. https://doi.org/10.1016/j.cep.2018.02.025.

    Article  CAS  Google Scholar 

  21. Du E, Zhao Q, Xiao Y, Cai L, Tao R. Electric field suppressed turbulence and reduced viscosity of asphaltene base crude oil sample. Fuel. 2018;220:358–62. https://doi.org/10.1016/j.fuel.2018.01.098.

    Article  CAS  Google Scholar 

  22. Kaneda M, Suga K. Magnetothermal force on heated or cooled pipe flow. Int J Heat Fluid Fl. 2018;69:1–8. https://doi.org/10.1016/j.ijheatfluidflow.2017.10.010.

    Article  Google Scholar 

  23. Armaghani T, Esmaeili H, Mohammadpoor YA, Pop I. MHD mixed convection flow and heat transfer in an open C-shaped enclosure using water-copper oxide nanofluid. Heat Mass Transf. 2018;54(6):1791–801. https://doi.org/10.1007/s00231-017-2265-3.

    Article  CAS  Google Scholar 

  24. Alsabery AI, Armaghani T, Chamkha AJ, Sadiq MA, Hashim I. Effects of two-phase nanofluid model on convection in a double lid-driven cavity in the presence of a magnetic field. Int J Numer Method H. 2018. https://doi.org/10.1108/hff-07-2018-0386.

    Article  Google Scholar 

  25. Mahmud S, Fraser RA. Magnetohydrodynamic free convection and entropy generation in a square porous cavity. Int J Heat Mass Transf. 2004;47(14–16):3245–56. https://doi.org/10.1016/j.ijheatmasstransfer.2004.02.005.

    Article  Google Scholar 

  26. Heidary H, Hosseini R. Free convection and entropy generation in inclined porous cavity under magnetic field. Int J Energy. 2014;15(1):46–61. https://doi.org/10.1504/ijex.2014.065105.

    Article  CAS  Google Scholar 

  27. Heidary H, Kermani MJ, Pirmohammadi M. Partition effect on thermo magnetic natural convection and entropy generation in inclined porous cavity. J Appl Fluid Mech. 2016;9(1):119–30.

    Article  Google Scholar 

  28. Gibanov NS, Sheremet MA, Oztop HF, Al-Salem K. Effect of uniform inclined magnetic field on natural convection and entropy generation in an open cavity having a horizontal porous layer saturated with a ferrofluid. Numer Heat Transf Part A. 2017;72(6):479–94. https://doi.org/10.1080/10407782.2017.1386515.

    Article  CAS  Google Scholar 

  29. Malik S, Nayak AK. MHD convection and entropy generation of nanofluid in a porous enclosure with sinusoidal heating. Int J Heat Mass Transf. 2017;111:329–45. https://doi.org/10.1016/j.ijheatmasstransfer.2017.03.123.

    Article  CAS  Google Scholar 

  30. Chamkha AJ, Rashad AM, Mansour MA, Armaghani T, Ghalambaz M. Effects of heat sink and source and entropy generation on MHD mixed convection of a Cu-water nanofluid in a lid-driven square porous enclosure with partial slip. Phys Fluids. 2017;29(5):21. https://doi.org/10.1063/1.4981911.

    Article  CAS  Google Scholar 

  31. Rashad AM, Armaghani T, Chamkha AJ, Mansour MA. Entropy generation and MHD natural convection of a nanofluid in an inclined square porous cavity: effects of a heat sink and source size and location. Chin J Phys. 2018;56(1):193–211. https://doi.org/10.1016/j.cjph.2017.11.026.

    Article  CAS  Google Scholar 

  32. Mansour MA, Ahmed SE, Chamkha AJ. Entropy generation optimization for MHD natural convection of a nanofluid in porous media-filled enclosure with active parts and viscous dissipation. Int J Numer Method H. 2017;27(2):379–99. https://doi.org/10.1108/HFF-10-2015-0408.

    Article  Google Scholar 

  33. Qi J, Wakayama NI, Yabe A. Magnetic control of thermal convection in electrically non-conducting or low-conducting paramagnetic fluids. Int J Heat Mass Transf. 2001;44(16):3043–52. https://doi.org/10.1016/S0017-9310(00)00354-9.

    Article  Google Scholar 

  34. Bednarz T, Fornalik E, Ozoe H, Szmyd JS, Patterson JC, Lei C. Influence of a horizontal magnetic field on the natural convection of paramagnetic fluid in a cube heated and cooled from two vertical side walls. Int J Therm Sci. 2008;47(6):668–79. https://doi.org/10.1016/j.ijthermalsci.2007.06.019.

    Article  CAS  Google Scholar 

  35. Kenjeres S, Pyrda L, Wrobel W, Fornalik-Wajs E, Szmyd JS. Oscillatory states in thermal convection of a paramagnetic fluid in a cubical enclosure subjected to a magnetic field gradient. Phys Rev E. 2012;85(4):8. https://doi.org/10.1103/PhysRevE.85.046312.

    Article  CAS  Google Scholar 

  36. Jiang C, Shi E, Hu Z, Zhu X, Xie N. Numerical simulation of thermomagnetic convection of air in a porous square enclosure under a magnetic quadrupole field using LTNE models. Int J Heat Mass Transf. 2015;91:98–109. https://doi.org/10.1016/j.ijheatmasstransfer.2015.07.103.

    Article  Google Scholar 

  37. Zhang D, Peng H, Ling X. Lattice Boltzmann method for thermomagnetic convection and entropy generation of paramagnetic fluid in porous enclosure under magnetic quadrupole field. Int J Heat Mass Transf. 2018;127:224–36. https://doi.org/10.1016/j.ijheatmasstransfer.2018.07.004.

    Article  Google Scholar 

  38. Song KW, Tagawa T. Thermomagnetic convection of oxygen in a square enclosure under non-uniform magnetic field. Int J Therm Sci. 2018;125:52–65. https://doi.org/10.1016/j.ijthermalsci.2017.11.012.

    Article  CAS  Google Scholar 

  39. Lee J, Nomura T, Dede EM. Heat flow control in thermo-magnetic convective systems using engineered magnetic fields. Appl Phys Lett. 2012;101(12):123507. https://doi.org/10.1063/1.4754119.

    Article  CAS  Google Scholar 

  40. Jiang CW, Zhong H, Feng W, Zen JY, Zhu QM. Numerical simulation of thermomagnetic convection of air in a porous square enclosure under a magnetic quadrupole field. J Supercond Nov Magn. 2014;27(2):519–25. https://doi.org/10.1007/s10948-013-2298-x.

    Article  CAS  Google Scholar 

  41. Jiang C, Feng W, Zhong H, Zeng J, Zhu Q. Effects of a magnetic quadrupole field on thermomagnetic convection of air in a porous square enclosure. J Magn Magn Mater. 2014;357:53–60. https://doi.org/10.1016/j.jmmm.2014.01.027.

    Article  CAS  Google Scholar 

  42. Landau LD, Lifshitz EM. Chapter IV—static magnetic field. In: Landau LD, Lifshitz EM, editors. Electrodynamics of continuous media. 2nd ed. Amsterdam: Pergamon; 1984. p. 105–29.

    Chapter  Google Scholar 

  43. Torabi M, Zhang K. Temperature distribution, local and total entropy generation analyses in MHD porous channels with thick walls. Energy. 2015;87:540–54. https://doi.org/10.1016/j.energy.2015.05.009.

    Article  Google Scholar 

  44. Armaghani T, Kasaeipoor A, Izadi M, Pop I. MHD natural convection and entropy analysis of a nanofluid inside T-shaped baffled enclosure. Int J Numer Method H. 2018;28(12):2916–41. https://doi.org/10.1108/HFF-02-2018-0041.

    Article  Google Scholar 

  45. Chamkha A, Ismael M, Kasaeipoor A, Armaghani T. entropy generation and natural convection of CuO-water nanofluid in c-shaped cavity under magnetic field. Entropy. 2016;1:8. https://doi.org/10.3390/e18020050.

    Article  CAS  Google Scholar 

  46. Al-Hadhrami AK, Elliott L, Ingham DB. A new model for viscous dissipation in porous media across a range of permeability values. Transp Porous Media. 2003;53(1):117–22. https://doi.org/10.1023/a:1023557332542.

    Article  Google Scholar 

  47. Shi E, Sun XQ, He YC, Jiang CW. Numerical simulation of thermomagnetic convection of cold water near its density maximum in a square enclosure under a magnetic quadrupole field. Fluid Dyn Res. 2017;49(3):13. https://doi.org/10.1088/1873-7005/aa6588.

    Article  Google Scholar 

  48. Shi E, Sun X, He Y, Jiang C. Effect of a magnetic quadrupole field on entropy generation in thermomagnetic convection of paramagnetic fluid with and without a gravitational field. Entropy. 2017;19(3):96.

    Article  Google Scholar 

  49. Ilis GG, Mobedi M, Sunden B. Effect of aspect ratio on entropy generation in a rectangular cavity with differentially heated vertical walls. Int Commun Heat Mass. 2008;35(6):696–703. https://doi.org/10.1016/j.icheatmasstransfer.2008.02.002.

    Article  CAS  Google Scholar 

  50. Yang L, Ren J, Song Y, Guo Z. Free convection of a gas induced by a magnetic quadrupole field. J Magn Magn Mater. 2003;261(3):377–84. https://doi.org/10.1016/S0304-8853(02)01487-7.

    Article  CAS  Google Scholar 

  51. Shi E, He Y, Sun X, Jiang C. Entropy generation and natural convection of air under a magnetic quadrupole field in a square enclosure. Energy Procedia. 2017;105:5073–8. https://doi.org/10.1016/j.egypro.2017.03.1027.

    Article  CAS  Google Scholar 

  52. Abedini A, Armaghani T, Chamkha AJ. MHD free convection heat transfer of a water–Fe3O4 nanofluid in a baffled C-shaped enclosure. J Therm Anal Calorim. 2018;135(1):685–95. https://doi.org/10.1007/s10973-018-7225-8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the financial support of the National Natural Science Foundation of China (No. 11572056), the Natural Science Foundation of Hunan Province (No. 2018JJ3533), the Education Department of Hunan Province (No. 17B008) and the China Scholarship Council under the research Grant of 201700800002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changwei Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, E., Zang, X., Jiang, C. et al. Entropy generation analysis for thermomagnetic convection of paramagnetic fluid inside a porous enclosure in the presence of magnetic quadrupole field. J Therm Anal Calorim 139, 2005–2022 (2020). https://doi.org/10.1007/s10973-019-08556-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08556-3

Keywords

Navigation