Skip to main content
Log in

Illustration of homogeneous–heterogeneous reactions on the MHD boundary layer flow through stretching curved surface with convective boundary condition and heat source

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The objective of the current study is to develop an investigation on the magnetohydrodynamic flow of viscous liquid through a nonlinear curved enlarging sheet due to the occurrence of heat source. The observation of heterogeneous and homogeneous reactions with the properties of heat source and transverse magnetic field is reflected in this discussion. Further, in a novel approach, the convective heating mechanism enriches the flow phenomena significantly. The governing partial differential equations are successfully transformed into the dimensionless form by using appropriate similarity transformations. The resultant non-dimensional form of equations is computed via the numerical scheme. The properties of the proposed physical constraints are observed and explored their significant behavior graphically. Additionally, the physical properties like surface drag force and local Nusselt numbers are calculated and presented in tabular form. Further, the major outcomes of the study reveal that the fluid velocity retards significantly for higher values of curvature constraint and stretching index and temperature of fluid enhances for the increasing power law stretching index along with the additional Biot number and heat source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

\(A,\,B\) :

Chemical species/–

\(a,\,b\) :

Concentrations/moles m3

\(a_1\) :

Positive constant/–

\(B_0\) :

Applied magnetic field/\({\text{N}}\,{\text{m}}^{1} \,{\text{A}}^{ - 1}\)

\(C_{{\text{f}}_{\text{s}} }\) :

Coefficient of skin friction/–

\(c_{\text{p}}\) :

Fluid density/\({\text{kg}}\,{\text{m}}^{3}\)

\(D_{\text{A}}\) :

Coefficients of diffusion for species \({\text{A}}\)/\({\text{m}}^2 {\text{s}}^{1}\)

\(D_{\text{B}}\) :

Coefficients of diffusion for species B/\({\text{m}}^2 {\text{s}}^{1}\)

\(f^{\prime}\) :

Non-dimensional velocity/–

\(h\) :

Non-dimensional concentration/–

\(h_{\text{f}}\) :

Convective coefficient/\({\text{W}}\,{\text{m}}^{2} \,{\text{K}}^{ - 1}\)

\(k\) :

Thermal conductivity/\({\text{W}}\,{\text{m}}^{1} \,{\text{K}}^{ - 1}\)

\(K\) :

Curvature parameter/–

\(k_1\) :

Homogeneous reaction parameter/–

\(k_2\) :

Heterogeneous reaction parameter/–

\(k_{\text{c}} ,\,\;k_{\text{s}}\) :

Rate constants/–

\(M\) :

Magnetic number/–

\(n\) :

Power law stretching index/–

\(p\) :

Pressure/\({\text{N}}\,{\text{m}}^{2}\)

Pr :

Prandtl number

\(Q_0\) :

Volumetric heat coefficient/\({\text{J}}\,{\text{K}}^{1} \,{\text{m}}^{ - 3}\)

\(Q\) :

Heat source/sink parameter/–

\(q_{\text{w}}\) :

Wall heat flux/\({\text{W}}\,{\text{m}}^{2}\)

\(R\) :

Radius/m

\({\text{Re}}_{\text{s}}\) :

Local Reynolds number/–

\(q_{{\text{m(A}})}\), :

Species \(A\) mass flux/ moles m2

\(q_{\text{m(B)}}\) :

Species \(B\) mass flux/ moles m2

\(Sc\) :

Schmidt number/–

\(s,\,r\) :

Coordinate axes/–

\(Sh_{\text{x(A)}}\) :

Sherwood number for species \(A\)/–

\(Sh_{\text{x(B)}}\) :

Sherwood number for species \(B\)/–

\(T\) :

Temperature/K

\(T_\infty\) :

Ambient fluid temperature/K

\(T_{\text{f}}\) :

Convective surface temperature/K

\(u_{\text{w}}\) :

Surface velocity/ms1

\(u,\,v\) :

Velocity components/ms1

\(\gamma\) :

Biot number/–

\(\mu\) :

Dynamic viscosity/\({\text{kg}}\,{\text{m}}^{1} {\text{s}}^{ - 1}\)

\(\rho\) :

Fluid density/\({\text{kg}}\,{\text{m}}^{3}\)

\(\nu\) :

Kinematic viscosity/\({\text{m}}^2 {\text{s}}^{1}\)

\(\theta\) :

Dimensionless temperature/–

\(\phi\) :

Dimensionless concentration/–

\(\delta\) :

The ratio of the diffusion coefficient

\(\sigma\) :

Electrical conductivity/\({\text{simens }}{\text{m}}^{1}\)

\(\tau_{{\text{rs}}}\) :

Shear stress at wall/\({\text{N}}\,{\text{m}}^{2}\)

\(\zeta\) :

Similarity variable

\(f\) :

Fluid particle

\(w\) :

At wall

References

  1. Abolbashari MH, Freidoonimehr N, Nazari F, Rashidi MM. Entropy analysis for an unsteady MHD flow past a stretching permeable surface in nano-fluid. Powder Technol. 2014;267:256–67.

    CAS  Google Scholar 

  2. Rashidi MM, Kavyani N, Abelman S. Investigation of entropy generation in MHD and slip low over a rotating porous disk with variable properties. Int J Heat Mass Transf. 2014;70:892–917.

    Google Scholar 

  3. Makinde OD, Chinyoka T. MHD transient flows and heat transfer of dusty fluid in a channel with variable physical properties and Navier slip condition. Comput Math Appl. 2010;60:660–9.

    Google Scholar 

  4. Reddy PS, Chamkha AJ, Al-Mudhaf A. MHD heat and mass transfer flow of a nanofluid over an inclined vertical porous plate with radiation and heat generation/absorption. Adv Powder Technol. 2017;28:1008–17.

    Google Scholar 

  5. Hayat T, Rashid M, Alsaedi A. MHD convective flow of magnetite-Fe3O4 nanoparticles by curved stretching sheet. Res Phys. 2017;7:3107–15.

    Google Scholar 

  6. Abbas Z, Rafiq MY, Alshomrani AS, Ullah MZ. Analysis of entropy generation on peristaltic phenomena of MHD slip flow of viscous fluid in a diverging tube. Case Stud Therm Eng. 2021;23: 100817.

    Google Scholar 

  7. Sharma RP, Tinker S, Gireesha BJ, Nagaraja B. Effect of convective heat and mass conditions in magnetohydrodynamics boundary layer flow with Joule heating and thermal radiation. Int J Appl Mech Eng. 2020;25:103–16.

    CAS  Google Scholar 

  8. Zainal NA, Nazar R, Naganthran K, Pop I. MHD mixed convection stagnation point flow of a hybrid nanofluid past a vertical flat plate with convective boundary condition. Chin J Phys. 2020;66:630–44.

    CAS  Google Scholar 

  9. Wahid NS, Md Arifin N, Khashi’ie NS, Pop I, Bachok N, Hafidz Hafidzuddin ME. Unsteady MHD mixed convection flow of a hybrid nanofluid with thermal radiation and convective boundary conditions. Chin J Phys. 2022;77:378–92.

    CAS  Google Scholar 

  10. Patela HR, Singh R. Thermophoresis, Brownian motion and non-linear thermal radiation effects on mixed convection MHD micropolar fluid flow due to nonlinear stretched sheet in porous medium with viscous dissipation, Joule heating, and convective boundary condition. Int Commun Heat Mass Transf. 2019;107:68–92.

    Google Scholar 

  11. Crane LJ. Flow past a stretching plate. J Appl Math Phys (ZAMP). 1970;21:645–7.

    Google Scholar 

  12. Rosca NC, Pop I. Unsteady boundary layer flow over a permeable curved stretching/shrinking surface. Eur J Mech B-Fluids. 2015;51:61–7.

    Google Scholar 

  13. Abbas Z, Naveed M, Sajid M. Hydromagnetic slip flow of nanofluid over a curved stretching surface with heat generation and thermal radiation. J Mol Liq. 2016;215:756–62.

    CAS  Google Scholar 

  14. Muhammad T, Rafique K, Asma M, Alghamdi M. Darcy-Forchheimer flow over an exponentially stretching curved surface with Cattaneo-Christov double diffusion. Physica A. 2020;556: 123968.

    Google Scholar 

  15. Raza R, Mabood F, Naza R. Entropy analysis of non-linear radiative flow of Carreau liquid over curved stretching sheet. Int Commun Heat Mass Transf. 2020;119: 104975.

    Google Scholar 

  16. Sharma RP, Gorai D, Das K. Comparative study on hybrid nanofluid flow of Ag–CuO/H2O over a curved stretching surface with Soret and Dufour effects. Heat Transf Asian Res. 2022;51:6365–83.

    Google Scholar 

  17. Ijaz Khan M, Khan SA, Hayat T, Qayyum S, Alsaedi A. Entropy generation analysis in MHD flow of viscous fluid by a curved stretching surface with cubic autocatalysis chemical reaction. Eur Phys J Plus. 2020;135:249.

    CAS  Google Scholar 

  18. Hayat T, Qayyum S, Alsaedi A, Shehzad SA. Nonlinear thermal radiation aspects in stagnation point flow of tangent hyperbolic nanofluid with double-diffusive convection. J Mol Liq. 2016;223:969–78.

    CAS  Google Scholar 

  19. Sharma RP, Prakash Om, Rashidi I, Mishra SR, Rao PS, Karimi F. Nonlinear thermal radiation and heat source effects on unsteady electrical MHD motion of nanofluid past a stretching surface with binary chemical reaction. Eur Phys J Plus. 2022;137:297.

    CAS  Google Scholar 

  20. Mythili D, Sivaraj R. Influence of higher order chemical reaction and non-uniform heat source/sink on Casson fluid flow over a vertical cone and flat plate. J Mol Liq. 2016;216:466–75.

    CAS  Google Scholar 

  21. Pal D, Mandal G. Thermal radiation and MHD effects on boundary layer flow of micropolar nanofluid past a stretching sheet with non-uniform heat source/sink. Int J Mech Sci. 2017;126:308–18.

    Google Scholar 

  22. Khan N, Al Khaled K, Khan A, Hashmi MS, Khan SU, Khan MI, Qayyum S. Aspects of constructive/destructive chemical reactions for viscous fluid flow between deformable wall channel with absorption and generation features. Int Commun Heat Mass Transf. 2021;120: 104956.

    CAS  Google Scholar 

  23. Ahmed J, Khan M, Ahmad L. Stagnation point flow of Maxwell nanofluid over a permeable rotating disk with heat source/sink. J Mol Liq. 2019;287: 110853.

    CAS  Google Scholar 

  24. Jamaludin A, Naganthran K, Nazar R, Pop I. MHD mixed convection stagnation point flow of Cu-Al2O3/water hybrid nanofluid over a permeable stretching/shrinking surface with heat source/sink. Eur J Mech B-Fluids. 2020;84:71–80.

    Google Scholar 

  25. Williams WR, Stenzel MT, Song X, Schmidt LD. Bifurcation behavior in homogeneous-heterogeneous combustion: I. Experimental results over platinum. Combust Flame. 1991;84:277–91.

    CAS  Google Scholar 

  26. Saif RS, Muhammad T, Sadia H, Ellahi R. Boundary layer flow due to a nonlinear stretching curved surface with convective boundary condition and homogeneous-heterogeneous reactions. Physica A. 2020;551: 123996.

    CAS  Google Scholar 

  27. Mishra SR, Mathur P, Ali HM. Analysis of homogeneous–heterogeneous reactions in a micropolar nanofluid past a nonlinear stretching surface: semi-analytical approach. J Therm Anal Calorim. 2021;144:2247–57.

    CAS  Google Scholar 

  28. Kameswaran PK, Shaw S, Sibanda P, Murthy PVSN. Homogeneous–heterogeneous reactions in a nanofluid flow due to a porous stretching sheet. Int Commun Heat Mass Transf. 2013;57:465–72.

    CAS  Google Scholar 

  29. Abbas Z, Sheikh M, Pop I. Stagnation-point flow of a hydromagnetic viscous fluid over stretching/shrinking sheet with generalized slip condition in the presence of homogeneous–heterogeneous reactions. J Taiwan Inst Chem Eng. 2015;55:69–75.

    CAS  Google Scholar 

  30. Waqas M. A mathematical and computational framework for heat transfer analysis of ferromagnetic non-Newtonian liquid subjected to heterogeneous and homogeneous reactions. J Magn Magn Mater. 2020;493: 165646.

    CAS  Google Scholar 

  31. Eid MR, Mahny ML, Al-Hossainy AF. Homogeneous-heterogeneous catalysis on electromagnetic radiative Prandtl fluid flow: Darcy-Forchheimer substance scheme. Surf Interfaces. 2021;24: 101119.

    CAS  Google Scholar 

  32. Bachok N, Ishak A, Pop I. On the stagnation-point flow towards a stretching sheet with homogeneous–heterogeneous reactions effects. Commun Nonlinear Sci Numer Simul. 2011;16:4296–302.

    Google Scholar 

  33. Seyyedi SM, Dogonchi AS, Ganji DD, Hashemi-Tilehnoee M. Entropy generation in a nanofluid-filled semi-annulus cavity by considering the shape of nanoparticles. J Therm Anal Calorim. 2019;138:1607–21.

    CAS  Google Scholar 

  34. Hashemi-Tilehnoee M, Dogonchi AS, Seyyedi SM, Chamkha AJ, Ganji DD. Magnetohydrodynamic natural convection and entropy generation analyses inside a nanofluid-filled incinerator-shaped porous cavity with a wavy heater block. J Therm Anal Calorim. 2020;141:2033–45.

    CAS  Google Scholar 

  35. Dogonchi AS, Waqas M, Seyyedi SM, Hashemi-Tilehnoee M, Ganji DD. CVFEM analysis for Fe3O4–H2O nanofluid in an annulus subject to thermal radiation. Int J Heat Mass Transf. 2019;132:473–83.

    CAS  Google Scholar 

  36. Tayebi T, Dogonchi AS, Karimi N, Ge-JiLe H, Chamkha AJ, Elmasry Y. Thermo-economic and entropy generation analyses of magnetic natural convective flow in a nanofluid-filled annular enclosure fitted with fins. Sustain Energy Technol Assess. 2021;46: 101274.

    Google Scholar 

  37. Chamkha AJ, Dogonchi AS, Ganji DD. Magnetohydrodynamic nanofluid natural convection in a cavity under thermal radiation and shape factor of nanoparticles impacts: a numerical study using CVFEM. Appl Sci. 2018;8(12):2396.

    CAS  Google Scholar 

  38. Seyyedi SM, Dogonchi AS, Hashemi-Tilehnoee M, Ganji DD, Chamkha AJ. Second law analysis of magneto-natural convection in a nanofluid-filled wavy-hexagonal porous enclosure. Int J Numer Methods Heat Fluid Flow. 2020;30:4811–36.

    Google Scholar 

  39. Dogonchi AS, Waqas M, Afshar SR, Seyyedi SM, Hashemi-Tilehnoee M, Chamkha AJ, Ganji DD. Investigation of magneto-hydrodynamic fluid squeezed between two parallel disks by considering Joule heating, thermal radiation, and adding different nanoparticles. Int J Numer Methods Heat Fluid Flow. 2020;30:659–80.

    Google Scholar 

  40. Dogonchi AS, Mishra SR, Chamkha AJ, Ghodrat M, Elmasry Y, Alhumade H. Thermal and entropy analyses on the buoyancy-driven flow of nanofluid inside a porous enclosure with two square cylinders: finite element method. Case Stud Therm Eng. 2021;27: 101298.

    Google Scholar 

  41. Eshaghi S, Izadpanah F, Dogonchi AS, Chamkha AJ, et al. The optimum double-diffusive natural convection heat transfer in an H-shaped cavity with a baffle inside and a corrugated wall. Case Stud Therm Eng. 2021;28:101541.

    Google Scholar 

  42. Pasha AA, Mottahir Alam Md, Tayebi T, Kasim S, Dogonchi AS, Irshad K, Chamkha AJ, Khan J, Galal AM. Heat transfer and irreversibility evaluation of non-Newtonian nanofluid density-driven convection within a hexagonal-shaped domain influenced by an inclined magnetic field. Case Stud Therm Eng. 2023;41:102588.

    Google Scholar 

  43. Shao Y, Nayak MK, Dogonchi AS, Chamkha AJ, Elmasry Y, Galal AM. Ternary hybrid nanofluid natural convection within a porous prismatic enclosure with two movable hot baffles: an approach to effective cooling. Case Stud Therm Eng. 2022;40: 102507.

    Google Scholar 

  44. Afshar SR, Mishra SR, Dogonchi AS, Karimi N, Chamkha AJ, Abulkhair H. Dissection of entropy production for the free convection of NEPCMs-filled porous wavy enclosure subject to volumetric heat source/sink. J Taiwan Inst Chem Eng. 2021;128:98–113.

    CAS  Google Scholar 

  45. Pasha AA, Tayebi T, Md. Mottahir Alam Md, Irshad K, Dogonchi AS, Chamkha AJ, Galal AM. Efficacy of exothermic reaction on the thermal-free convection in a nano-encapsulated phase change materials-loaded enclosure with circular cylinders inside. J Energy Stor. 2023;59:106522.

    Google Scholar 

  46. Zidan AM, Tayebi T, Dogonchi AS, Chamkha AJ, et al. Entropy-based analysis and economic scrutiny of magneto thermal natural convection enhancement in a nanofluid-filled porous trapezium-shaped cavity having localized baffles. Waves Random Complex Media. 2022. https://doi.org/10.1080/17455030.2022.2084651.

    Article  Google Scholar 

  47. Mathur P, Mishra SR. Insight into the dynamics of micropolar fluid through annulus when the rate of entropy generation is significant. Heat Transf Asian Res. 2021;50:753–65.

    Google Scholar 

  48. Mathur P, Mishra SR, Purohit SD, Bohra M. Entropy generation in a micropolar fluid past an inclined channel with velocity slip and heat flux conditions: variation parameter method. Heat Transf Asian Res. 2021;50(7):7425–39.

    Google Scholar 

  49. Mathur P, Mishra SR, Pattnaik PK, Dash RK. Characteristics of Darcy-Forchheimer drag coefficients and velocity slip on the flow of micropolar nanofluid. Heat Transf Asian Res. 2021;50(7):6529–47.

    Google Scholar 

  50. Mishra SR, Mathur P. Williamson nanofluid flow through a porous medium in the presence of melting heat transfer boundary condition: semi-analytical approach. Multidiscip Model Mater Struct. 2020;17:19–33.

    Google Scholar 

  51. Gireesha BJ, Anitha L. Irreversibility analysis of micropolar nanofluid flow using Darcy-Forchheimer rule in an inclined microchannel with multiple slip effects. Heat Transf Asian Res. 2022;51(6):5834–56.

    Google Scholar 

  52. Ahmad S, Ali K, Haider T, Jamshed W, et al. Thermal characteristics of kerosene oil-based hybrid nanofluids (Ag-MnZnFe2O4): a comprehensive study. Front Energy Res. 2022;10: 978819.

    Google Scholar 

  53. Gupta AK, Mathur P, Oyedeji MO, Alade IO, Qahtan TF, Gupta S. Development of predictive models for density of hybrid nanofluids using different machine learning techniques. Proc Inst Mech Eng Part E-J Process Mech Eng. 2022. https://doi.org/10.1177/09544089221124288.

    Article  Google Scholar 

  54. Baag S, Mishra SR, Mathur P. Characteristics of variable plate conditions on the time-dependent flow of polar fluid over an expanding/contracting surface. Proc Inst Mech Eng Part N-J Nanomater Nanoeng Nanosyst. 2022. https://doi.org/10.1177/23977914221103345.

    Article  Google Scholar 

  55. Mathur P, Mishra SR, Pattnaik PK. Marangoni convection of γ-Al2O3-water/ethylene glycol nanofluids with the inclusion of nonlinear thermal radiation. Proc Inst Mech Eng Part N-J Nanomater Nanoeng Nanosyst. 2022. https://doi.org/10.1177/23977914221093839.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. R. Mishra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, R.P., Sharma, A. & Mishra, S.R. Illustration of homogeneous–heterogeneous reactions on the MHD boundary layer flow through stretching curved surface with convective boundary condition and heat source. J Therm Anal Calorim 148, 12119–12132 (2023). https://doi.org/10.1007/s10973-023-12466-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12466-w

Keywords

Navigation