Skip to main content
Log in

Numerical simulation of water spray transport along a plate of a heat exchanger

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Water spraying is widely being used in many industrial applications because of the benefits it has shown over cooling. This paper presents a numerical investigation to simulate evaporating water spray along a plate of an exchanger. Indeed, we were interested in a horizontal channel whose lower wall is the plate of the exchanger maintained at a heating flow. This plate is exposed to a turbulent airflow in which water droplets were injected. The equations governing the continuous phases (air) and the dispersed phase (water) were developed. These equations were solved using Comsol Multiphysics. A comparison of the simulation results and those of the experiment reveals an acceptable concordance. Therefore, the numerical results present the thermal behavior by studying transversal and longitudinal evolution of temperature. Moreover, the maximum evaporated water flow (mmaxew) and the plate temperature are investigated for several physical parameters of the continuous phase, such as velocity, relative humidity and inlet temperature. The results show that these parameters have significant impact on the cooling of the plate. In addition, mmaxew witnesses a remarkable decrease by increasing relative humidity. However, increasing air velocity and inlet air temperature could improve mmaxew.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

a :

Vein length section (m)

b :

Vein width section (m)

C :

Concentration (kg m−3)

Cp :

Heat capacity (J kg−1 K−1)

d :

Diameter of the drop (m)

D :

Thermal diffusivity (m² s−1)

F i :

Droplet movement (kg m−3 s−1)

F d :

Drag force (N)

F g :

Gravity (N)

F p :

Pressure force (N)

h :

Heat transfer coefficient (W m−2 K−1)

h fg :

Latent heat of vaporization (J kg−1)

k :

Turbulent kinetic energy (m2 s−1)

kc :

Turbulent kinetic energy (m2 s−1)

m :

Droplet mass (kg)

Nu:

Nusselt number (–)

P :

Pressure (Pa)

q :

Flux de chaleur (W m−2)

q m :

Droplet energy (W m−3)

Re:

Reynolds number (–)

Sc:

Schmidt number (–)

Shd :

Sherwood number (–)

S m :

Droplet mass (kg m−3)

T :

Temperature (K)

t :

Time (s)

u :

Velocity (m s−1)

ε :

Turbulent dissipation rate (m2 s−3)

λ :

Thermal conductivity (W m−1 K−1)

μ :

Dynamic viscosity (kg m−1 s−1)

ρ :

Density (kg m−3)

σ :

Surface tension (N m−1)

τ :

Viscous stress tensor (kg m−1 s−2)

ϕ :

Volume fraction (–)

a:

Air

i, j, k:

Direction indices

p:

Water particles

s:

Saturation

References

  1. Bergles E. Handbook of heat transfer. 3rd ed. New York: McGraw-Hill; 1998.

    Google Scholar 

  2. André B. Heat exchangers-operating problems. In: Techniques de l’ingénieur, B2344 v1; 1995.

  3. André B. Heat exchangers, Intensification of thermal exchanges. In: Techniques de l’ingénieur, B2343 v1; 1994.

  4. Sun W, Chen D, Wang L, Peng W. A control-oriented modeling approach for two-phase flow plate heat exchanger. J Ther Anal Calorim. 2018;131(2):1735–46.

    Article  CAS  Google Scholar 

  5. Elperin IT. Heat transfer of two-phase flow with a bundle of tubes. Inzhererno Fizicheski Zhurnal. 1961;4(8):30–5.

    Google Scholar 

  6. Oplatka G. Improved operating characteristics of dry cooling towers by partial precooling of the air. Brown Boveri Rev. 1981;81:136–43.

    Google Scholar 

  7. Rubin AM. Demonstration of adiabatic cooling to improve the performance of air-cooled heat exchangers. Pennsylvania: Franklin Institute Research Laboratories; 1975.

    Book  Google Scholar 

  8. Bhatti MS, Savery CW. Augmentation of heat transfer in a laminar external gas boundary layer by the vaporization of suspended droplets. J Heat Transf. 1975;97(2):179–84.

    Article  Google Scholar 

  9. Ebrahimian V, Gorji-Bandpy M. Two-dimensional modeling of water spray cooling in superheated steam. Therm Sci. 2008;12(2):79–88.

    Article  Google Scholar 

  10. Zhang Z, Li J, Jiang P. Experimental investigation of spray cooling on flat and enhanced surfaces. Appl Therm Eng. 2013;51:102–11.

    Article  Google Scholar 

  11. Vouros A, Vouros A, Panidis T. Experimental study of a water-mist jet issuing normal to a heated flat plate. Therm Sci. 2016;20(2):149.

    Article  Google Scholar 

  12. Malý M, Moita AS, Jedelsky J. Effect of nanoparticles concentration on the characteristics of nanofluid sprays for cooling applications. J Therm Anal Calorim. 2019;135(6):3375–86.

    Article  Google Scholar 

  13. Wells W. On air-borne infection: study II. Droplets and droplet nuclei. Am J Epidemiol. 1934;20(3):611–8.

    Article  Google Scholar 

  14. Sureshkuma R, Kale SR, Dhar PL. Heat and mass transfer processes between a water spray and ambient air—II. Simulations. Appl Therm Eng. 2008;28:361–71.

    Article  Google Scholar 

  15. Chaker M, Meher Homji CB, Mee T. Inlet fogging of gas turbine engines-part I: fog droplet thermodynamics, heat transfer, and practical considerations. J Eng Gas Turbines Power Trans ASME. 2004;126(3):545–58.

    Article  Google Scholar 

  16. Wachtell GP. Atomized water injection to improve dry cooling tower performance. National Technical Information Service; 1974.

  17. Tissot J, Boulet P, Labergue A, Castanet G, Trinquet F, Fournaison L. Experimental study on air cooling by spray in the upstream flow of a heat exchanger. Int J Therm Sci. 2012;60:23–31.

    Article  Google Scholar 

  18. Tissot J, Boulet P, Trinquet F, Fournaison L, Macchi-Tejeda H. Air cooling by evaporating droplets in the upward flow of a condenser. Int J Therm Sci. 2011;50:2122–31.

    Article  Google Scholar 

  19. Bianchi M, Chaker M, Pascale A, Peretto A, Spina P. CFD simulation of water injection in GT inlet duct using spray experimentally tuned data: nozzle spray simulation model and results for an application to a heavy-duty gas turbine. Proc ASME Turbo. 2007;3:629–42.

    Google Scholar 

  20. Wang T, Li X, Pinninti V. Simulation of mist transport for gas turbine inlet air cooling. Numer Heat Transf Part A. 2008;53:1013–36.

    Article  CAS  Google Scholar 

  21. Chaker M, Meher Homji CB, Mee T. Inlet fogging of gas turbine engines–part II: fog droplet sizing analysis, nozzle types, measurement, and testing. J Eng Gas Turbines Power Trans ASME. 2004;126(3):559–70.

    Article  Google Scholar 

  22. Chaker M, Meher Homji CB, Mee T. Inlet fogging of gas turbine engines—part III: fog behavior in inlet ducts, computational fluid dynamics analysis, and wind tunnel experiments. J Eng Gas Turbines Power Trans ASME. 2004;126(3):571–80.

    Article  Google Scholar 

  23. Hain Y, Litinetski V, Litinetsky A. Parametric study of installed fogging systems using CFD model. In: Proceedings of the 9th biennial conference on engineering systems design and analysis, vol 1; 2009. p 25–33.

  24. Wang T, Li X, Pinninti V. Simulation of mist transport for gas turbine inlet air cooling. Int Mech Eng Congr Expos. 2004;53(10):1013–36.

    Google Scholar 

  25. Pinilla JA, Asuaje M, Ratkovich N. Study of a fogging system using a computational fluid dynamics simulation. Appl Therm Eng. 2016;96:228–39.

    Article  Google Scholar 

  26. Wei J, He J. Numerical simulation for analyzing the thermal improving effect of evaporative cooling urban surfaces on the urban built environment. Appl Therm Eng. 2013;51:144–54.

    Article  CAS  Google Scholar 

  27. Montazeri H, Blocken B, Hensen JLM. Evaporative cooling by water spray systems: CFD simulation, experimental validation and sensitivity analysis. Build Environ. 2015;83:129–41.

    Article  Google Scholar 

  28. Montazeri H, Blocken B, Hensen JLM. CFD analysis of the impact of physical parameters on evaporative cooling by a mist spray system. Appl Therm Eng. 2015;75:608–22.

    Article  Google Scholar 

  29. Alkhedhair A, Gurgenci H, Jahn I, Guan Z, He S. Numerical simulation of water spray for pre-cooling of inlet air in natural draft dry cooling towers. Appl Therm Eng. 2013;61(2):416–24.

    Article  Google Scholar 

  30. Chen Z, Xie Q, Chen G, Yu Y, Zhao Z. Numerical simulation of single-nozzle large scale spray cooling on drum wall. Therm Sci. 2018;22:359–70.

    Article  Google Scholar 

  31. Gao T, Zeng J, Xia Q, Li J, Gong J. Effects of operating conditions on flow and heat transfer characteristics of mist cooling in a square ribbed channel. J Mech Sci Technol. 2017;31(3):1517–30.

    Article  Google Scholar 

  32. Sheikholeslami M, Jafaryar M, Shafee A, Li Z. Nanofluid heat transfer and entropy generation through a heat exchanger considering a new turbulator and CuO nanoparticles. J Therm Anal Calom. 2019;134(3):2295–303.

    Article  Google Scholar 

  33. Sheikholeslami M, Haq R, Shafee A, Li Z, Elaraki Y, Tlili I. Heat transfer simulation of heat storage unit with nanoparticles and fins through a heat exchanger. Inter J Heat Mass Transf. 2019;135:470–8.

    Article  CAS  Google Scholar 

  34. Sheikholeslami M, Jafaryar M, Li Z. Nanofluid turbulent convective flow in a circular duct with helical turbulators considering CuO nanoparticles. Int J Heat Mass Transf. 2018;124:980–9.

    Article  CAS  Google Scholar 

  35. Zhao L, Wang T. An experimental study of mist/air film cooling on a flat plate with application to gas turbine airfoils—part I: heat transfer. In: ASME Turbo Expo 2013: turbine technical conference and exposition, San Antonio; 2013.

  36. Zhao L, Wang T. An experimental study of mist/air film cooling on a flat plate with application to gas turbine airfoils—part II: two-phase flow measurements and droplet dynamics. In: ASME Turbo Expo 2013: turbine technical conference and exposition, San Antonio; 2013.

  37. Dhanasekaran TS, Wang T. Computational analysis of mist/air cooling in a two-pass rectangular rotating channel with 45-deg angled rib turbulators. Int J Heat Mass Transf. 2013;61:554–64.

    Article  Google Scholar 

  38. Dhanasekaran TS, Wang T. Numerical model validation and prediction of mist/steam cooling in a 180-degree bend tube. J Int Heat Mass Transf. 2012;55:3818–28.

    Article  CAS  Google Scholar 

  39. Ranz WE, Marshall WR. Evaporation from drops. Chem Eng Prog. 1952;48:141–6.

    CAS  Google Scholar 

  40. Ranz WE, Marshall WR. Evaporation from drops, part II. Chem Eng Prog. 1952;48:173–80.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nihel Grich.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grich, N., Foudhil, W., Harmand, S. et al. Numerical simulation of water spray transport along a plate of a heat exchanger. J Therm Anal Calorim 143, 3887–3895 (2021). https://doi.org/10.1007/s10973-020-09356-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09356-w

Keywords

Navigation