Skip to main content
Log in

A control-oriented modeling approach for two-phase flow plate heat exchanger

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this paper, a simple yet accurate model is proposed for real-time control and optimization of two-phase flow plate heat exchanger (PHE). The model is derived with selected controllable or measurable I/O parameters and heat mass transfer equations by mechanism analysis. The linear and nonlinear least-squares methods are adopted to identify unknown or empirical parameters to reduce the error of evaluation and prediction in applications. The modeling approach takes advantages of both mechanism and empirical model, which has the effectiveness that the unreachable parameters are eliminated while the computation is reduced with wide operating range. Validation was carried out in a substation in a district heating system, and the testing results showed that the proposed model can predict the performance of the PHE with a maximum error less than ±8% that satisfied the requirements of real-time control and optimization in applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

A :

Area

b :

Coefficient

c :

Coefficient

C p :

Specific heat capacity at constant pressure (kJ kg−1 °C−1)

h :

Average heat transfer coefficient (kW m−2 K−1)

H :

Specific enthalpy (kJ kg−1)

K :

Thermal conductivity (kW m−1 °C−1)

M :

Mass flow rate (kg s−1)

NuD :

Nusselt number

P :

Pressure (bar)

Pr :

Prandtl number

Q :

Heat transfer (KJ)

Re D :

Reynolds number

T :

Temperature (°C)

u :

Velocity (m s−1)

V :

Volume (L)

Δ:

Difference

Μ :

Velocity (m s−1)

ρ :

Density (kg m−3)

η :

Efficiency of plate heat exchanger

e, f:

Coefficient

SF, sf:

Second flow of plate heat exchanger

WF, wf:

First flow of plate heat exchanger

References

  1. Kumar V, Tiwari AK, Ghosh SK. Application of nanofluids in plate heat exchanger: a review. Energy Convers Manag. 2015;105:1017–36.

    Article  CAS  Google Scholar 

  2. Martin H. A theoretical approach to predict the performance of chevron-type plate heat exchangers. Chem Eng Process. 1996;35(4):301–10.

    Article  CAS  Google Scholar 

  3. Qiao H, Aute V, Lee H, et al. A new model for plate heat exchangers with generalized flow configurations and phase change. Int J Refrig. 2013;36(2):622–32.

    Article  CAS  Google Scholar 

  4. Hsieh YY, Lin TF. Saturated flow boiling heat transfer and pressure drop of refrigerant R-410A in a vertical plate heat exchanger. Int J Heat Mass Transf. 2002;45(5):1033–44.

    Article  CAS  Google Scholar 

  5. Bobbili PR, Sunden B, Das SK. Thermal analysis of plate condensers in presence of flow maldistribution. Int J Heat Mass Transf. 2006;49(25):4966–77.

    Article  CAS  Google Scholar 

  6. Gherasim I, Galanis N, Nguyen CT. Effects of dissipation and temperature-dependent viscosity on the performance of plate heat exchangers. Appl Therm Eng. 2009;29(14):3132–9.

    Article  CAS  Google Scholar 

  7. Gut JAW, Pinto JM. Modeling of plate heat exchangers with generalized configurations. Int J Heat Mass Transf. 2003;46(14):2571–85.

    Article  Google Scholar 

  8. Eldeeb R, Aute V, Radermacher R. A survey of correlations for heat transfer and pressure drop for evaporation and condensation in plate heat exchangers. Int J Refrig. 2016;65:12–26.

    Article  Google Scholar 

  9. Dizaji HS, Jafarmadar S, Abbasalizadeh M, et al. Experiments on air bubbles injection into a vertical shell and coiled tube heat exchanger, energy and NTU analysis. Energy Convers Manag. 2015;103:973–80.

    Article  Google Scholar 

  10. Vlasogiannis P, Karagiannis G, Argyropoulos P, et al. Air–water two-phase flow and heat transfer in a plate heat exchanger. Int J Multiph Flow. 2002;28(5):757–72.

    Article  CAS  Google Scholar 

  11. Ding X, Cai W, Duan P, et al. Hybrid dynamic modeling for two phase flow condensers. Appl Therm Eng. 2014;62(2):830–7.

    Article  Google Scholar 

  12. Abadi GB, Moon C, Kim KC. Experimental study on single-phase heat transfer and pressure drop of refrigerants in a plate heat exchanger with metal-foam-filled channels. Appl Therm Eng. 2016;102:423–31.

    Article  Google Scholar 

  13. Laubscher R, Dobson RT. Theoretical and experimental modelling of a heat pipe heat exchanger for high temperature nuclear reactor technology. Appl Therm Eng. 2013;61(2):259–67.

    Article  CAS  Google Scholar 

  14. Wang X, Cai W, Lu J, et al. A hybrid dehumidifier model for real-time performance monitoring, control and optimization in liquid desiccant dehumidification system. Appl Energy. 2013;111:449–55.

    Article  Google Scholar 

  15. Wang X, Cai W, Lu J, et al. Heat and mass transfer model for desiccant solution regeneration process in liquid desiccant dehumidification system. Ind Eng Chem Res. 2014;53(7):2820–9.

    Article  CAS  Google Scholar 

  16. Wang L, Cai W, Zhao H, et al. Experimentation and cycle performance prediction of hybrid A/C system using automobile exhaust waste heat. Appl Therm Eng. 2016;94:314–23.

    Article  Google Scholar 

  17. Taler D. Mathematical modeling and control of plate fin and tube heat exchangers. Energy Convers Manag. 2015;96:452–62.

    Article  Google Scholar 

  18. Wang X, Cai W, Lu J, et al. Model-based optimization strategy of chiller driven liquid desiccant dehumidifier with genetic algorithm. Energy. 2015;82:939–48.

    Article  CAS  Google Scholar 

  19. Moshizi SA, Malvandi A. Different modes of nanoparticle migration at mixed convection of Al2O3-water nanofluid inside a vertical microannulus in the presence of heat generation/absorption. J Therm Anal Calorim. 2016;126:1947–62.

    Article  CAS  Google Scholar 

  20. Arkhipov DI, Bobrysheva NP, et al. Thermal stability of modified chromium dioxide nanopowders with various magnetic properties obtained by hydrothermal route. J Therm Anal Calorim. 2017;128:71–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was funded by the Fundamental Research funds of Shandong University under the Grant No. 2014JC022 and the Natural Science Foundation of Shandong Province of China under the Grant No. ZR2016FM24.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongyan Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, W., Chen, D., Wang, L. et al. A control-oriented modeling approach for two-phase flow plate heat exchanger. J Therm Anal Calorim 131, 1735–1746 (2018). https://doi.org/10.1007/s10973-017-6648-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6648-y

Keywords

Navigation