Skip to main content
Log in

Thermal decomposition of several N,N′-bis(2-hydroxyiminoalkyl)-α,α′-dinitrones

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

N,N′-Bis(2-hydroxyiminoalkyl)-α,α′-dinitrones are of interest for the synthesis of 1,1′-dihydroxy-2,2′-biimidazoles. Thermal decomposition of two these dinitrones was studied in helium atmosphere. Thermal decomposition of the studied dinitrones at temperature interval 20–500 °C consists of several steps, the first step accompanying with significant exothermic effect (700–1000 J g−1). The first step has been shown to be a two-stage process, and decomposition products have been determined using chromatography–mass spectrometry. Thermogravimetric curves were used for the kinetic studies. Kinetic parameters of decomposition are estimated within the approaches of non-isothermal kinetics (“model-free” kinetics and nonlinear regression methods), with the computer program Netzsch Thermokinetics 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tikhonov AYa, Selivanov BA, Gatilov YuV. 1,1′-Dihydroxy-2,2′-biimidazoles: a new synthesis and crystal structure. Tetrahedron Lett. 2015;56:159–61.

    Article  CAS  Google Scholar 

  2. Bigley MJ, Radigan KJ, Nathan LC. Aliphatic di-n-oxide complexes; cobalt(II), nickel(II), and chromium(III) perchlorate complexes of N,N,NN′-tetramethylethylenediamine-N,N′-dioxide. Inorg Chim Acta. 1976;16:209–12.

    Article  CAS  Google Scholar 

  3. Raspertova I, Osetska O, Gubina K, Lampeka R. Synthesis and study Co, Mn, Cu, Ni and UO2-ion coordination complexes with aliphatic dinitrones. Polyhedron. 2011;30:2320–5.

    Article  CAS  Google Scholar 

  4. Chakraborty B, Luitel GP. Synthesis of some novel bisisoxazolidine derivatives from glyoxal-derived bisnitrones via simultaneous double cycloaddition reactions in water. J Heterocycl Chem. 2015;52:726–31.

    Article  CAS  Google Scholar 

  5. Camehn R, Rehse K. New NO donors with antithrombotic and vasodilating activities, Part 29. N-(1-cyanocyclohexyl)-C-phenylnitrones and glyoxaldinitrones. Arch Pharm Pharm Med Chem. 2000;333:130–4.

    Article  CAS  Google Scholar 

  6. Сoburn CE, Enzien MV, Mc Ginley HR, Moore DW. Protected antimicrobial compounds for high temperature applications. WO 2012/082350.

  7. Thummel RP, Goulle V, Chen B. Bridged derivatives of 2,2′-biimidazole. J Organ Chem. 1989;54:3057–61.

    Article  CAS  Google Scholar 

  8. Melloni P, Fusar-Bassini D, Dradi E, Confalonieri C. Synthesis of diimidazo[1,2-a:2′,1′-c]pyrazines and diimidazo[1,2-a:2′,1′-c][1,4]diazepines. J Heterocycl Chem. 1974;11:731–5.

    Article  CAS  Google Scholar 

  9. Tadokoro M, Isobe K, Uekusa H, Ohashi Y, Toyoda J, Tashiro K, Nakasuji K. Cation-dependent formation of superstructures by one-pot self-organization of hydrogen-bonded nickel complexes. Angew Chem Int Ed. 1999;38:95–8.

    Article  CAS  Google Scholar 

  10. Casas JS, Castineiras A, Parajo Y, Sanchez A, Sanchez-Gonzalez A, Sordo J. Synthesis and cytotoxicity of new Pt(IV) complexes of 2,2′-biimidazole and derivatives. Polyhedron. 2005;24:1196–202.

    Article  CAS  Google Scholar 

  11. Nonell S, Borrell JI, Borros S, Colominas C, Rey O, Rubio N, Sanchez-Garcia D, Teixido J. 2,7,12,17-tetra(p-butylphenyl)-3,6,13,16-tetraazaporphycene: the first example of a straightforward synthetic approach to a new class of photosensitizing macrocycles. Eur J Organ Chem. 2003;2003:1635–40.

    Article  CAS  Google Scholar 

  12. Matthews DP, Mc Carthy JR, Whitten JP, Kastner PR, Barney CL, Marshall FN, Ertel MA, Burkhard T, Shea PJ, Kariya T. Synthesis and cardiotonic activity of novel biimidazoles. J Med Chem. 1990;33:317–27.

    Article  CAS  Google Scholar 

  13. Melloni P, Dradi E, Logemann W, De Carneri I, Trane F. Synthesis and antiprotozoal activity of methylnitro derivatives of 2,2′-biimidazole. J Med Chem. 1972;15:926–30.

    Article  CAS  Google Scholar 

  14. Yin P, He C, Shreeve JM. Fully C/N-polynitro-functionalized 2,2′-biimidazole derivatives as nitrogen- and oxygen-rich energetic salts. Chem Eur J. 2016;22:2108–13.

    Article  CAS  Google Scholar 

  15. Albu P, Doca SC, Anghel A, Vlase G, Vlase T. Thermal behavior of sodium alendronate. J Therm Anal Calorim. 2017;127(1):571–6. https://doi.org/10.1007/s10973-016-5745-7.

    Article  CAS  Google Scholar 

  16. Doca SC, Albu P, Ceban I, Anghel A, Vlase G, Vlase T. Sodium alendronate used in bone treatment. J Therm Anal Calorim. 2016;126(1):189–94. https://doi.org/10.1007/s10973-016-5619-z.

    Article  CAS  Google Scholar 

  17. Albu P, Budiul M, Mateescu M, Chiriac V, Vlase G, Vlase T. Studies regarding the induced thermal degradation, kinetic analysis and possible interactions with various excipients of an osseointegration agent—zoledronic acid. J Therm Anal Calorim. 2017;130(1):403–11. https://doi.org/10.1007/s10973-017-6537-4.

    Article  CAS  Google Scholar 

  18. Fuliaş A, Ledeţi I, Vlase G, Vlase T, Şoica C, Dehelean C, Oprean C, Bojin F, Şuta LM, Bercean V, Avram Ş. Thermal degradation, kinetic analysis, and apoptosis induction in human melanoma for oleanolic and ursolic acids. J Therm Anal Calorim. 2016;125:759–68. https://doi.org/10.1007/s10973-015-5052-8.

    Article  CAS  Google Scholar 

  19. Trache D, Maggi F, Palmucci I, DeLuca LT. Thermal behavior and decomposition kinetics of composite solid propellants in the presence of amide burning rate suppressants. J Therm Anal Calorim. 2018;132:1601–15. https://doi.org/10.1007/s10973-018-7160-8.

    Article  CAS  Google Scholar 

  20. Vlase G, Albu P, Doca SC, Mateescu M, Vlase T. The kinetic study of the thermally induced degradation and an evaluation of the drug–excipient interactions performed for a new-generation bisphosphonate–risedronate. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7216-9.

    Article  Google Scholar 

  21. Circioban D, Ledetёi I, Vlase G, Ledetёi A, Axente C, Vlase T, Dehelean C. Kinetics of heterogeneous-induced degradation for artesunate and artemether. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7257-0.

    Article  Google Scholar 

  22. Crisan M, Vlase G. Ethylethanolammonium 4-nitrobenzoate synthesis, structural characterization, thermal analysis, non-isothermal kinetic investigations and corrosion inhibitor efficiency. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7296-6.

    Article  Google Scholar 

  23. Netzsch Thermokinetics. Technical Data Sheet: Thermokinetics 3 - NETZSCH Thermal Analysis.

  24. Moukhina E. Determination of kinetic mechanisms for reactions measured with thermoanalytical instruments. J Therm Anal Calorim. 2012;109:1203–14.

    Article  CAS  Google Scholar 

  25. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  26. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. J Polym Sci. 1963;6:183–95.

    Google Scholar 

  27. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  28. Ozawa T. Estimation of activation energy by isoconversion methods. Thermochim Acta. 1992;203:159–65.

    Article  CAS  Google Scholar 

  29. Flynn JH, Wall LA. General treatment of the thermogravimetry of polymers. J Res Nat Bur Stand. 1966;70:478–523.

    Google Scholar 

  30. Opfermann J, Kaisersberger E. An advantageous variant of the Ozawa–Flynn–Wall analysis. Thermochim Acta. 1992;203:167–75.

    Article  CAS  Google Scholar 

  31. Opfermann JR, Kaisersberger E, Flammersheim HJ. Model-free analysis of thermo-analytical data—advantages and limitations. Thermochim Acta. 2002;391:119–27.

    Article  CAS  Google Scholar 

  32. Vyazovkin S. Model-free kinetics: staying free of multiplying entities without necessity. J Therm Anal Calorim. 2006;83:45–51.

    Article  CAS  Google Scholar 

  33. Simon P. Single-step kinetics approximation employing nonarrhenius temperature functions. J Therm Anal Calorim. 2005;79:703–8.

    Article  CAS  Google Scholar 

  34. Simon P. The single-step approximation: attributes, strong and weak sides. J Therm Anal Calorim. 2007;88:709–15.

    Article  CAS  Google Scholar 

  35. Borchard HJ, Daniels F. The application of differential thermal analysis to the study of reaction kinetics. J Am Chem Soc. 1957;79:41–6.

    Article  Google Scholar 

  36. Vyazovkin S, Burnham AK, Criado JM, Luis A, Perez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  37. Vyazovkin S, Chrissafis K, Di Lorenzo M-R, Koga N, Pijolat M, Roduit B, Sbirrazzuoli N, Suñol J-J. ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim Acta. 2014;590:1–23.

    Article  CAS  Google Scholar 

  38. Vyazovkin S. Isoconversional kinetics of thermally stimulated processes. Berlin: Springer; 2015.

    Book  Google Scholar 

  39. Simon P, Thomas P, Dubaj T, Cibulkova Z, Peller A, Veverka M. The mathematical incorrectness of the integral isoconversional methods in case of variable activation energy and the consequences. J Therm Anal Calorim. 2014;115:853–9.

    Article  CAS  Google Scholar 

  40. Simon P, Dubaj T, Cibulkova Z. Equivalence of the Arrhenius and non-Arrhenian temperature functions in the temperature range of measurement. J Therm Anal Calorim. 2015;120:231–8.

    Article  CAS  Google Scholar 

  41. Sestak J. Is the original Kissinger equation obsolete today: not obsolete the entire non-isothermal kinetics? J Therm Anal Calorim. 2014;117:3–7.

    Article  CAS  Google Scholar 

  42. Galwey AK. What theoretical and/or chemical significance is to be attached to the magnitude of an activation energy determined for a solid-state decomposition by thermal analysis? J Therm Anal Calorim. 2006;86:267–86.

    Article  CAS  Google Scholar 

  43. Roura P, Farjas J. Analytical solution for the Kissinger equation. J Mater Res. 2009;24:3095–8.

    Article  CAS  Google Scholar 

  44. Holba P, Šesták J. Imperfections of Kissinger evaluation method and crystallization kinetics. Glass Phys. Chem (translation from Russian journal). 2014;40:486–91.

    Article  CAS  Google Scholar 

  45. Dubaj T, Cibulková Z, Šimon P. An incremental isoconversional method for kinetic analysis based on the orthogonal distance regression. J Comput Chem. 2015;36:392–8.

    Article  CAS  Google Scholar 

  46. Logvinenko VA, Aliev SB, Bolotov VA, Dybtsev DN, Fedin VP. Thermal (kinetic) stability of inclusion compounds on the basis of porous metal–organic frameworks. Dependence on the guest and framework properties. J Therm Anal Calorim. 2017;127:779–87.

    Article  CAS  Google Scholar 

  47. Lomovsky O, Bychkov A, Lomovsky I, Logvinenko V, Burdukov A. Mechanochemical production of lignin-containing powder fuels from biotechnical industry waste: a review. Therm Sci. 2015;19:219–29.

    Article  Google Scholar 

  48. Vasilyeva I, Logvinenko V. Contribution of chemical methods to the study of nanostructure of ultrafine and amorphous materials. Solid State Phenom. 2017;257:237–40.

    Article  Google Scholar 

  49. Logvinenko VA, Makotchenko VG, Fedorov VE. Reactivity in combustion process for expanded graphites: influence of dimensional effect. Nanosyst Phys Chem Math (NANO. F & H & M). 2016;7:234–43.

    Article  CAS  Google Scholar 

  50. Makotchenko VG, Pinakov DV, Logvinenko VA. The influence of dimensional effects on the composition and properties of polydicarbonfluoride. Chem Asian J. 2015;10:1761–7.

    Article  CAS  Google Scholar 

  51. Chekhova GN, Pinakov DV, Shubin YuV, Logvinenko VA. Structural rearrangements of the inclusion compound of fluorinated graphite with acetonitrile during isothermal deintercalation. J Therm Anal Calorim. 2017;128:349–55. https://doi.org/10.1007/s10973-016-5846-3.

    Article  CAS  Google Scholar 

  52. Bushuev MB, Pishchur DP, Logvinenko VA, Gatilov YuV, Korolkov IV, Shundrina IK, Nikolaenkova EB, Krivopalov VP. Mononuclear iron(II) complex: cooperativity, kinetics and activation energy of the solvent-dependent spin transition. Dalton Trans. 2016;45:107–20.

    Article  CAS  Google Scholar 

  53. Krisyuk VV, Baidina IA, Kryuchkova NA, Logvinenko VA, Plyusnin PE, Korolkov IV, Zharkova GI, Turgambaeva AE, Igumenov IK. Volatile heterometallics: structural diversity of palladium-lead ß-diketonates and correlation with thermal properties. Dalton Trans. 2017;46:12245–56. https://doi.org/10.1039/c7dt02843a.

    Article  CAS  PubMed  Google Scholar 

  54. Evtushok DV, Vorotnikova NA, Logvinenko VA, Smolentsev AI, Brylev KA, Plyusnin PE, Pishchur DP, Kitamura N, Mironov YV, Solovieva AO, Efremova OA, Shestopalov MA. Luminescent coordination polymers based on Ca2+ and octahedral cluster anions [{M6Cli8 }Cla6 ]2− (M = Mo, W): synthesis and thermal stability studies. New J Chem. 2017;41:14855–61.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Russian Foundation for Basic Research (Grant 14–03–00291).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Logvinenko.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 61 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Logvinenko, V.A., Fadeeva, V.P., Selivanov, B.A. et al. Thermal decomposition of several N,N′-bis(2-hydroxyiminoalkyl)-α,α′-dinitrones. J Therm Anal Calorim 140, 685–693 (2020). https://doi.org/10.1007/s10973-019-08868-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08868-4

Keywords

Navigation