Skip to main content
Log in

Heat transfer characteristics and field synergy analysis of gas–liquid two-phase flow in micro-channels

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

To meet the extreme cooling requirements in many high-tech fields, it is essential and meaningful to reveal the dominant factors of heat transfer performance of gas–liquid two-phase flow in micro-channel. In the present work, the flow and heat transfer characteristics of bubbly, slug and annular flow in circular micro-channel are numerically studied with the VOF model. Moreover, the field synergy principle is introduced to reveal the dominant mechanisms of heat transfer improvement under various flow patterns. As a result, the evolutions of local Nusselt number, volume fraction and near-wall average field synergy angle along the flow direction under various flow patterns are obtained. Moreover, the effects of gas and liquid flow rates are discussed on the average Nusselt numbers and average field synergy angle. The numerical results indicate that the heat transfer performance of gas–liquid two-phase flow is better than single-phase flow, and the slug flow owns the best heat transfer performance. It should be noted that the heat transfer enhancement of bubbly and slug flow is attributed to the decrease in field synergy angle in the boundary layer. By contrast, the liquid phase velocity near the wall plays a dominant role in heat transfer enhancement of annular flow. Furthermore, the heat transfer performance of gas–liquid two-phase flow is strongly influenced by the gas flow rate, and Reg= 24.5 is the optimal value to enhance heat transfer performance for the condition of Rel= 445. The results are expected to provide theoretical guidance for the design and optimization of the micro-channel heat exchangers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

A :

Cross-sectional area of micro-channel, m2

Bo :

Bond number \(\left( {(\rho_{\text{l}} - \rho_{\text{g}} )aD^{2} /\sigma } \right)\)

c p :

Heat capacity, J kg−1 K−1

d :

Channel diameter, mm

d 0 :

The inner core diameter of the pipe, mm

e :

Internal energy, J kg−1

\(\overrightarrow {F}_{\text{S}}\) :

Surface tension term, N

H :

Enthalpy, J kg−1

L :

Channel length, mm

Nu x :

Local Nusselt number

Nu m :

Average Nusselt number on the heated section

P :

Pressure, Pa

Q g :

Gas volumetric flow rate, m3 s−1

Q l :

Liquid volumetric flow rate, m3 s−1

q w :

Wall heat flux, W m−2

Re g :

Gas superficial Reynolds number

Re l :

Liquid superficial Reynolds number

R :

Channel radius, mm

r :

Radial coordinate, mm

T :

Temperature, K

T av :

Average temperature of fluid on the heated section, K

T b :

Bulk temperature, K

\(\nabla \mathop T\limits^{ \to }\) :

Temperature gradient vector, K m−1

T w :

Wall temperature, K

t :

Time, s

\(\overrightarrow {U}\) :

Velocity vector

j g :

Gas superficial velocity, m s−1

j l :

Liquid superficial velocity, m s−1

u :

Radial velocity, m s−1

V i :

Volume per control volume

x :

Axial coordinate, mm

\(\alpha_{\text{g}}\) :

Gas volume fraction

\(\alpha_{\text{l}}\) :

Liquid volume fraction (1 − αg)

\(\rho_{\text{g}}\) :

Gas density, kg m−3

\(\rho_{\text{l}}\) :

Liquid density, kg m−3

\(\mu_{\text{g}}\) :

Gas dynamic viscosity, Pa s

\(\mu_{\text{l}}\) :

Liquid dynamic viscosity, Pa s

\(\lambda_{\text{l}}\) :

Liquid’s thermal conductivity, W m−1 K−1

\(\theta_{\text{i}}\) :

Local field synergy angle, deg

\(\theta_{\text{av}}\) :

Average field synergy angle, deg

av:

Average value

b:

Bulk mean

i:

Per control volume

g:

Gas

l:

Liquid

w:

Wall

References

  1. Deng D, Chen L, Wan W, Fu T, Huang X. Flow boiling performance in pin fin- interconnected reentrant microchannels heat sink in different operational conditions. Appl Therm Eng. 2019;150:1260–72.

    Article  CAS  Google Scholar 

  2. Xia GD, Tang YX, Zong LX, Ma DD, Jia YT, Rong RZ. Experimental investigation of flow boiling characteristics in microchannels with the sinusoidal wavy sidewall. Int Commun Heat Mass Transf. 2019;101:89–102.

    Article  Google Scholar 

  3. Chai L, Wang L. Thermal-hydraulic performance of interrupted microchannel heat sinks with different rib geometries in transverse microchambers. Int J Therm Sci. 2018;127:201–12.

    Article  Google Scholar 

  4. Abdollahi A, Norris S, Sharma RN. Fluid flow and heat transfer of gas-liquid two-phase flow in microchannels. In: 21st Australasian fluid mechanics conference, Adelaide, Australia, 10–13 December 2018; 12018.

  5. Ribatski G. A critical overview on the recent literature concerning flow boiling and two-phase flows inside micro-scale channels. Exp Heat Transf. 2013;26:198–246.

    Article  CAS  Google Scholar 

  6. Saisorn S, Srithumkhant P, Wongpromma P, Suchatawat M, Wongwises S. Flow pattern, heat transfer and pressure drop behaviors of micro-channel flow boiling. In: ASME 2018 16th international conference on nanochannels, microchannels, and minichannels. American Society of Mechanical Engineers; 2018. pp. V001T002A009–V001T002A009.

  7. Chao C, Xu X, Kwelle SO, Fan X. Significance of gas-liquid interfaces for two-phase flows in micro-channels. Chem Eng Sci. 2018;192:114–25.

    Article  CAS  Google Scholar 

  8. Smith K, Kempers R, Robinson AJ. Confinement and vapour production rate influences in closed two-phase reflux thermosyphons Part A: flow regimes. Int J Heat Mass Transf. 2018;119:907–21.

    Article  CAS  Google Scholar 

  9. Chang H, Fu Q, Zhong N, Yang X, Quan X, Li S, Fu J, Xiao C. Microalgal lipids production and nutrients recovery from landfill leachate using membrane photobioreactor. Biores Technol. 2019;277:18–26.

    Article  CAS  Google Scholar 

  10. Abiev R, Svetlov S, Haase S. Hydrodynamics and mass transfer of gas–liquid and liquid–liquid Taylor flow in microchannels. Chem Eng Technol. 2017;40:1985–98.

    Article  CAS  Google Scholar 

  11. Vivekanand SVB, Raju VRK. Effect of wall contact angle and carrier phase velocity on the flow physics of gas–liquid Taylor flows inside microchannels. Chem Pap. 2019;73:1173–88.

    Article  CAS  Google Scholar 

  12. Kumari S, Kumar N, Gupta R. Flow and heat transfer in slug flow in microchannels: effect of bubble volume. Int J Heat Mass Transf. 2019;129:812–26.

    Article  Google Scholar 

  13. Chen WL, Twu MC, Pan C. Gas–liquid two-phase flow in micro-channels. Int J Multiph Flow. 2002;28:1235–47.

    Article  CAS  Google Scholar 

  14. Saisorn S, Wongwises S. Adiabatic two-phase gas-liquid flow behaviors during upward flow in a vertical circular micro-channel. Exp Thermal Fluid Sci. 2015;69:158–68.

    Article  Google Scholar 

  15. Li H-W, Pei H-F, Yang D, Sun B, Zhou Y-L. Analysis of the dynamic characteristics of air-water two-phase flow in small channel based on multi-scale normalized Benford probability distribution. Chem Eng Sci. 2018;179:161–71.

    Article  CAS  Google Scholar 

  16. Walsh E, Muzychka Y, Walsh P, Egan V, Punch J. Pressure drop in two-phase slug/bubble flows in mini scale capillaries. Int J Multiph Flow. 2009;35:879–84.

    Article  CAS  Google Scholar 

  17. Hetsroni G, Mosyak A, Pogrebnyak E, Segal Z. Heat transfer of gas-liquid mixture in micro-channel heat sink. Int J Heat Mass Transf. 2009;52:3963–71.

    Article  CAS  Google Scholar 

  18. Choo K, Trainer D, Kim SJ, ASME. The effect of channel diameter on heat transfer characteristics of two-phase flow in microchannels; 2011).

  19. Osher S, Fedkiw RP. Level set methods: an overview and some recent results. J Comput Phys. 2001;169:463–502.

    Article  CAS  Google Scholar 

  20. Li Y, Su T, Liang H, Xu J-R. Phase field lattice Boltzmann model for two-phase flow coupled with additional interfacial force. Acta Physica Sinica. 2018;67:22.

    Google Scholar 

  21. Chiu P-H, Lin Y-T. A conservative phase field method for solving incompressible two-phase flows. J Comput Phys. 2011;230:185–204.

    Article  CAS  Google Scholar 

  22. Gupta R, Fletcher DF, Haynes BS. CFD modelling of flow and heat transfer in the Taylor flow regime. Chem Eng Sci. 2010;65:2094–107.

    Article  CAS  Google Scholar 

  23. Qian D, Lawal A. Numerical study on gas and liquid slugs for Taylor flow in a T-junction microchannel. Chem Eng Sci. 2006;61:7609–25.

    Article  CAS  Google Scholar 

  24. Muzychka YS. Laminar heat transfer for gas-liquid segmented flows in circular and non-circular ducts with constant wall temperature. In: ASME 2014 12th international conference on nanochannels, microchannels, and minichannels collocated with the ASME 2014 4th joint US-European fluids engineering division summer meeting. American Society of Mechanical Engineers Digital Collection. 2014.

  25. Guo ZY, Tao WQ, Shah RK. The field synergy (coordination) principle and its applications in enhancing single phase convective heat transfer. Int J Heat Mass Transf. 2005;48:1797–807.

    Article  Google Scholar 

  26. Chen X, Zhao T, Zhang M-Q, Chen Q. Entropy and Entransy in convective heat transfer optimization: a review and perspective. Int J Heat Mass Transf. 2019;137:1191–220.

    Article  Google Scholar 

  27. Li H, Yu T, Wang D, Xu H. Heat-transfer enhancing mechanisms induced by the coherent structures of wall-bounded turbulence in channel with rib. Int J Heat Mass Transf. 2019;137:446–60.

    Article  Google Scholar 

  28. Tao W-Q, He Y-L, Chen L. A comprehensive review and comparison on heatline concept and field synergy principle. Int J Heat Mass Transf. 2019;135:436–59.

    Article  Google Scholar 

  29. Brackbill JU, Kothe DB, Zemach C. A continuum method for modeling surface tension. J Comput Phys. 1992;100:335–54.

    Article  CAS  Google Scholar 

  30. Hirt CW, Nichols BD. Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys. 1981;39:201–25.

    Article  Google Scholar 

  31. Hazel AL, Heil M. The steady propagation of a semi-infinite bubble into a tube of elliptical or rectangular cross-section. J Fluid Mech. 2002;470:91–114.

    Article  Google Scholar 

  32. Triplett KA, Ghiaasiaan S, Abdel-Khalik S, Sadowski D. Gas–liquid two-phase flow in microchannels Part I: two-phase flow patterns. Int J Multiph Flow. 1999;25:377–94.

    Article  CAS  Google Scholar 

  33. Rosengarten G, Cooper-White J, Metcalfe G. Experimental and analytical study of the effect of contact angle on liquid convective heat transfer in microchannels. Int J Heat Mass Transf. 2006;49:4161–70.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (Nos. 51676208 and 51906257), the Fundamental Research Funds for the Central Universities (Grant Nos. 18CX07012A and 19CX05002A) and the Chinese Postdoctoral Science Foundation (No. 2018M642724).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Ding.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, XY., Li, FB., Ding, B. et al. Heat transfer characteristics and field synergy analysis of gas–liquid two-phase flow in micro-channels. J Therm Anal Calorim 141, 401–412 (2020). https://doi.org/10.1007/s10973-019-08821-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08821-5

Keywords

Navigation