Skip to main content
Log in

Numerical study of mixed convection heat transfer inside a vertical microchannel with two-phase approach

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The current study investigates the laminar and two-phase nanofluid flow inside a two-dimensional rectangular microchannel with the ratio of length to height of L/H = 120. This study is simulated by using finite volume method in two-dimensional coordinates. Because most of the miniature equipments are affected by the oscillating heat flux, we try to study the hydrodynamical behavior of flow and heat transfer with oscillating heat flux boundary condition. The present research has been carried out in Reynolds numbers of 150–1000 and Ag nanoparticles volume fractions of 0–4% by applying slip and no-slip boundary conditions. Also, in order to estimate the heat transfer behavior and the computational fluid dynamics, two-phase mixture method is employed. The obtained results are analyzed and presented as the contours of Nusselt number, friction coefficient, pressure drop, thermal resistance and temperature. The results also revealed that, applying slip boundary condition on microchannel walls and the enhancement of fluid velocity, Grashof number and volume fraction of nanoparticles cause the improvement of Nusselt number, reduction of thermal resistance and total entropy generation and the augmentation of pressure drop. According to the obtained results, the presence of oscillating heat flux affects the changes of Nusselt number, significantly. In comparison with the pure water fluid with Reynolds numbers of 1000, 700 and 400, in Grashof number of 1000 with no-slip boundary condition on microchannel walls, the enhancement of average Nusselt number in volume fraction of 4% in the same Reynolds numbers is 45%. Also, in mentioned conditions, the pressure drop increases almost 2.8 times further.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

A :

Area (m2)

B = β/H :

Dimensionless slip velocity

C f :

Skin friction factor

C p :

Heat capacity (J kg−1 K−1)

H :

Microchannel height (μm)

k :

Thermal conductivity coefficient (W m−1 K−1)

L :

Microchannel length (μm)

g :

Gravity acceleration (m s−2)

Nu :

Nusselt number

P :

Fluid pressure (Pa)

s :

Entropy (J kg−1 K−1)

Pr = υ f/α f :

Prandtl number

q″(X):

Oscillating heat flux (W m−2)

q0 :

Constant heat flux (W m−2)

R :

Thermal resistance (m K W−1)

Re = ρ m u c d/μ m :

Reynolds number

T :

Temperature (K)

\(X = \frac{x}{H} = \bar{x},\,\,Y = \frac{y}{H} = \bar{y}\) :

Cartesian dimensionless coordinates

u, v :

Velocity components in x, y directions (m s−1)

u c :

Inlet velocity in x directions (m s−1)

u s :

Brownian motion velocity (m s−1)

T :

Silicon layer thickness (μm)

β :

Slip velocity coefficient (m)

φ :

Nanoparticles volume fraction

μ :

Dynamic viscosity (Pa s)

θ = (T − T C)/ΔT :

Dimensionless temperature

ρ :

Density (kg m−3)

τ :

Shear stress (N m−2)

υ :

Kinematics viscosity (m2 s−1)

Ave:

Average

c:

Cold

Eff:

Effective

f:

Base fluid (pure water)

H:

Hot

In:

Inlet

Max:

Maximum

Min:

Minimum

nf:

Nanofluid

Out:

Outlet

S:

Solid nanoparticles

References

  1. Siavashi M, Jamali M. Heat transfer and entropy generation analysis of turbulent flow of TiO2–water nanofluid inside annuli with different radius ratios using two-phase mixture model. Appl Therm Eng. 2016;100:1149–60.

    Article  CAS  Google Scholar 

  2. Yousofvand R, Derakhshan Sh, Ghasemi K, Siavashi M. MHD transverse mixed convection and entropy generation study of electromagnetic pump including a nanofluid using 3D LBM simulation. Int J Mech Sci. 2017. https://doi.org/10.1016/j.ijmecsci.2017.08.034.

    Article  Google Scholar 

  3. Ghasemi K, Siavashi M. MHD nanofluid free convection and entropy generation in porous enclosures with different conductivity ratios. J Magn Magn Mater. 2017. https://doi.org/10.1016/j.jmmm.2017.07.028.

    Article  Google Scholar 

  4. Barzegarian R, Aloueyan A, Yousefi T. Thermal performance augmentation using water based Al2O3–gamma nanofluid in a horizontal shell and tube heat exchanger under forced circulation. Int Commun Heat Mass Transf. 2017;86:52–9.

    Article  CAS  Google Scholar 

  5. Siavashi M, Talesh Bahrami HR, Saffari H. Numerical investigation of flow characteristics, heat transfer and entropy generation of nanofluid flow inside an annular pipe partially or completely filled with porous media using two-phase mixture model. Energy. 2015;93:2451–66.

    Article  CAS  Google Scholar 

  6. Rashidi S, Mahian O, Mohseni Languri E. Applications of nanofluids in condensing and evaporating systems. J Therm Anal Calorim. 2017. https://doi.org/10.1007/s10973-017-6773-7.

    Article  Google Scholar 

  7. Siavashi M, Talesh Bahrami HR, Saffari H. Numerical investigation of porous rib arrangement on heat transfer and entropy generation of nanofluid flow in an annulus using a two-phase mixture model. Numer Heat Transf Part A Appl. 2017. https://doi.org/10.1080/10407782.2017.1345270.

    Article  Google Scholar 

  8. Rashidi S, Eskandarian M, Mahian O, Poncet S. Combination of nanofluid and inserts for heat transfer enhancement. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7070-9.

    Article  Google Scholar 

  9. Siavashi M, Rostami A. Two-phase simulation of non-Newtonian nanofluid natural convection in a circular annulus partially or completely filled with porous media. Int J Mech Sci. 2017;133:689–703.

    Article  Google Scholar 

  10. Darbari B, Rashidi S, Abolfazli Esfahani J. Sensitivity analysis of entropy generation in nanofluid flow inside a channel by response surface methodology. Entropy. 2016;18:1–16.

    Article  Google Scholar 

  11. Javadi P, Rashidi S, Abolfazli Esfahani J. Flow and heat management around obstacle by nanofluid and incidence angle. J Thermophys Heat Transf. 2017;31:983–8.

    Article  CAS  Google Scholar 

  12. Barzegarian R, Moraveji MK, Aloueyan A. Experimental investigation on heat transfer characteristics and pressure drop of BPHE (brazed plate heat exchanger) using TiO2–water nanofluid. Exp Therm Fluid Sci. 2016;74:11–8.

    Article  CAS  Google Scholar 

  13. Siavashi M, Jamali M. Optimal selection of annulus radius ratio to enhance heat transfer with minimum entropy generation in developing laminar forced convection of water–Al2O3 nanofluid flow. J Cent South Univ. 2017;24:1850–65.

    Article  CAS  Google Scholar 

  14. Ghasemi K, Siavashi M. Lattice Boltzmann numerical simulation and entropy generation analysis of natural convection of nanofluid in a porous cavity with different linear temperature distributions on side walls. J Mol Liq. 2017;233:415–30.

    Article  CAS  Google Scholar 

  15. Keshavarz Moraveji M, Barzegarian R, Bahiraei M, Barzegarian M, Aloueyan A, Wongwises S. Numerical evaluation on thermal-hydraulic characteristics of dilute heat-dissipating nanofluids flow in microchannels. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7181-3.

    Article  Google Scholar 

  16. Zeibi Shirejini S, Rashidi S, Esfahani JA. Recovery of drop in heat transfer rate for a rotating system by nanofluids. J Mol Liq. 2016;220:961–9.

    Article  CAS  Google Scholar 

  17. Yaghoubi Emami R, Siavashi M, Shahriari Moghaddam Gh. The effect of inclination angle and hot wall configuration on Cu–water nanofluid natural convection inside a porous square cavity. Adv Powder Technol. 2018. https://doi.org/10.1016/j.apt.2017.10.027.

    Article  Google Scholar 

  18. Siavashi M, Yousofvand R, Rezanejad S. Nanofluid and porous fins effect on natural convection and entropy generation of flow inside a cavity. Adv Powder Technol. 2017. https://doi.org/10.1016/j.apt.2017.10.021.

    Article  Google Scholar 

  19. Goshayeshi HR, Goodarzi M, Dahari M. Effect of magnetic field on the heat transfer rate of kerosene/Fe2O3 nanofluid in a copper oscillating heat pipe. Exp Therm Fluid Sci. 2015;68:663–8.

    Article  CAS  Google Scholar 

  20. Akbarzadeh M, Rashidi S, Karimi N, Omar N. First and second laws of thermodynamics analysis of nanofluid flow inside a heat exchanger duct with wavy walls and a porous insert. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7044-y.

    Article  Google Scholar 

  21. Goodarzi M, Kherbeet ASh, Afrand M, Sadeghinezhad E, Mehrali M, Zahedi P, Wongwises S, Dahari M. Investigation of heat transfer performance and friction factor of a counter-flow double-pipe heat exchanger using nitrogen-doped, graphene-based nanofluids. Int Commun Heat Mass Transf. 2016;76:16–23.

    Article  CAS  Google Scholar 

  22. Goshayeshi HR, Goodarzi M, Safaei MR, Dahari M. Experimental study on the effect of inclination angle on heat transfer enhancement of a ferro-nanofluid in a closed loop oscillating heat pipe under magnetic field. Exp Therm Fluid Sci. 2016;74:265–70.

    Article  CAS  Google Scholar 

  23. Akar Sh, Rashidi S, Esfahani JA. Second law of thermodynamic analysis for nanofluid turbulent flow around a rotating cylinder. J Therm Anal Calorim. 2017. https://doi.org/10.1007/s10973-017-6907-y.

    Article  Google Scholar 

  24. Rashidi S, Akbarzadeh M, Karimi N, Masoodi R. Combined effects of nanofluid and transverse twisted-baffles on the flow structures, heat transfer and irreversibilities inside a square duct—a numerical study. Appl Therm Eng. 2018;130:135–48.

    Article  CAS  Google Scholar 

  25. Parizad R, Rashidi S, Esfahani JA. Experimental investigation of nanofluid free convection over the vertical and horizontal flat plates with uniform heat flux by PIV. Adv Powder Technol. 2016;27:312–22.

    Article  CAS  Google Scholar 

  26. Esfahani JA, Safaei MR, Goharimanesh M, Oliveira LRD, Goodarzi M, Shamshirband Sh, Filho EPB. Comparison of experimental data, modelling and non-linear regression on transport properties of mineral oil based nanofluids. Powder Technol. 2017;317:458–70.

    Article  CAS  Google Scholar 

  27. Rashidi S, Javadi P, Esfahani JA. Second law of thermodynamics analysis for nanofluid turbulent flow inside a solar heater with the ribbed absorber plate. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7164-4.

    Article  Google Scholar 

  28. Rashidi S, Esfahani JA. Optimum interaction between magnetohydrodynamics and nanofluid for thermal and drag management. J Thermophys Heat Transf. 2017;31:218–29.

    Article  Google Scholar 

  29. Safaei MR, Ahmadi G, Goodarzi MSh, Safdari Shadloo M, Goshayeshi HR, Dahari M. Heat transfer and pressure drop in fully developed turbulent flow of graphene nanoplatelets–silver/water nanofluids. Fluids. 2016;1(3):1–20.

    Article  CAS  Google Scholar 

  30. Safaei MR, Ahmadi G, Goodarzi MSh, Kamyar A, Kazi SN. Boundary layer flow and heat transfer of FMWCNT/water nanofluids over a flat plate. Fluids. 2016;1(4):1–13.

    Article  CAS  Google Scholar 

  31. Goshayeshi HR, Safaei MR, Goodarzi M, Dahari M. Particle size and type effects on heat transfer enhancement of ferro-nanofluids in a pulsating heat pipe under magnetic field. Powder Technol. 2016;301:1218–26.

    Article  CAS  Google Scholar 

  32. Nikkhah Z, Karimipour A, Safaei MR, Forghani-Tehrani P, Goodarzi M, Dahari M, Wongwises S. Forced convective heat transfer of water/functionalized multi-walled carbon nanotube nanofluids in a microchannel with oscillating heat flux and slip boundary condition. Int Commun Heat Mass Transf. 2015;68:69–77.

    Article  CAS  Google Scholar 

  33. Safaei MR, Gooarzi M, Akbari OA, Safdari Shadloo M and Dahari M. Performance evaluation of nanofluids in an inclined ribbed microchannel for electronic cooling applications, “electronics cooling”, Prof. S M Sohel Murshed (ed.), InTech; 2016. https://doi.org/10.5772/62898. http://www.intechopen.com/books/electronics-cooling/performance-evaluation-of-nanofluids-in-an-inclined-ribbed-microchannel-for-electronic-cooling-appli.

  34. Raisi A, Ghasemi B, Aminossadati SM. A numerical study on the forced convection of laminar nanofluid in a microchannel with both slip and no slip condition. Numer Heat Transf A Appl. 2011;59:114–29.

    Article  CAS  Google Scholar 

  35. Elshazly K, Moawed M, Ibrahim E, Emara M. Heat transfer by free convection from the inside surface of the vertical and inclined elliptic tube. Energy Convers Manag. 2005;46:1443–63.

    Article  Google Scholar 

  36. Lotfi R, Saboohi Y, Rashidi AM. Numerical study of forced convection heat transfer of nanofluids: comparison of different approaches. Int Commun Heat Mass Transf. 2010;37:74–8.

    Article  CAS  Google Scholar 

  37. Behzadmehr A, Saffar-Avval M, Galanis N. Prediction of turbulent forced convection of a nanofluid in a tube with uniform heat flux using two phase approach. Int J Heat Fluid Flow. 2007;28:211–9.

    Article  CAS  Google Scholar 

  38. Akbari OA, Karimipour A, Toghraie Semiromi D, Safaei MR, Alipour H, Goodarzi M, Dahari M. Investigation of Rib’s height effect on heat transfer and flow parameters of laminar water–Al2O3 nanofluid in a two dimensional rib-microchannel. Appl Math Comput. 2016;290:135–53.

    Google Scholar 

  39. Behnampour A, Akbari OA, Safaei MR, Ghavami M, Marzban A, Ahmadi Sheikh Shabani Gh, Zarringhalam M, Mashayekhi R. Analysis of heat transfer and nanofluid fluid flow in microchannels with trapezoidal, rectangular and triangular shaped ribs. Physica E. 2017;91:15–31.

    Article  CAS  Google Scholar 

  40. Karimipour A, Alipour H, Akbari OA, Toghraie Semiromi D, Esfe MH. Studying the effect of indentation on flow parameters and slow heat transfer of water–silver nanofluid with varying volume fraction in a rectangular two-dimensional microchannel. Indian J Sci Technol. 2015;8(15):51707.

    Article  Google Scholar 

  41. Siavashi M, Talesh Bahrami HR, Aminian E. Optimization of heat transfer enhancement and pumping power of a heat exchanger tube using gradient and multi-layered porous foams. Appl Therm Eng. 2018. https://doi.org/10.1016/j.applthermaleng.2018.04.066.

    Article  Google Scholar 

  42. Toosi MH, Siavashi M. Two-phase mixture numerical simulation of natural convection of nanofluid flow in a cavity partially filled with porous media to enhance heat transfer. J Mol Liq. 2017. https://doi.org/10.1016/j.molliq.2017.05.015.

    Article  Google Scholar 

  43. Alikhani S, Behzadmehr A, Saffar-Avval M. Numerical study of nanofluid mixed convection in a horizontal curved tube using two-phase approach. Heat Mass Transf. 2011;47:107–18.

    Article  CAS  Google Scholar 

  44. Gravndyan Q, Akbari OA, Toghraie D, Marzban A, Mashayekhi R, Karimi R, Pourfattah F. The effect of aspect ratios of rib on the heat transfer and laminar water/TiO2 nanofluid flow in a two-dimensional rectangular microchannel. J Mol Liq. 2017;236:254–65.

    Article  CAS  Google Scholar 

  45. Chon H, Kihm KD, Lee SP, Choi SUS. Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement. Appl Phys Lett. 2005;87:1–3.

    Article  CAS  Google Scholar 

  46. Alipour H, Karimipour A, Safaei MR, Toghraie Semiromi D, Akbari OA. Influence of T-semi attached rib on turbulent flow and heat transfer parameters of a silver–water nanofluid with different volume fractions in a three-dimensional trapezoidal microchannel. Physica E. 2017;88:60–76.

    Article  CAS  Google Scholar 

  47. Maiga SE, Nguyen CT, Galanis N, Roy G. Heat transfer behaviors of nanofluids in a uniformly heated tube. Super Lattices Microstruct. 2004;35:543–57.

    Article  CAS  Google Scholar 

  48. Turkyilmazoglu M. Performance of direct absorption solar collector with nanofluid mixture. Energy Convers Manag. 2016;114:1–10.

    Article  CAS  Google Scholar 

  49. Khanafer K, Vafai K, Lightstone M. Buoyancy-driven heat transfer enhancement in a two dimensional enclosure utilizing nanofluids. Int J Heat Mass Transf. 2003;46:3639–53.

    Article  CAS  Google Scholar 

  50. Akbari OA, Goodarzi M, Safaei MR, Zarringhalam M, Ahmadi Sheikh Shabani GhR, Dahari M. A modified two-phase mixture model of nanofluid flow and heat transfer in 3-D curved microtube. Adv Powder Technol. 2016;27:2175–85.

    Article  CAS  Google Scholar 

  51. Akbari OA, Toghraie D, Karimipour A, Marzban A, Ahmadi GR. The effect of velocity and dimension of solid nanoparticles on heat transfer in non-Newtonian nanofluid. Physica E. 2017;86:68–75.

    Article  CAS  Google Scholar 

  52. Shamsi MR, Akbari OA, Marzban A, Toghraie D, Mashayekhi R. Increasing heat transfer of non-Newtonian nanofluid in rectangular microchannel with triangular ribs. Physica E. 2017;93:167–78.

    Article  CAS  Google Scholar 

  53. Leng C, Wang XD, Wang TH, Yan WM. Multi-parameter optimization of flow and heat transfer for a novel double-layered microchannel heat sink. Int J Heat Mass Transf. 2015;84:359–69.

    Article  Google Scholar 

  54. Bejan A. Entropy Generation through heat and fluid flow. New York: Wiley; 1982.

    Google Scholar 

  55. Mahian O, Kianifar A, Kleinstreuer C, Al-Nimr MA, Pop I, Sahin AZ, Wongwises S. A review of entropy generation in nanofluid flow. Int J Heat Mass Transf. 2013;65:514–32.

    Article  CAS  Google Scholar 

  56. Rezaei O, Akbari OA, Marzban A, Toghraie D, Pourfattah F, Mashayekhi R. The numerical investigation of heat transfer and pressure drop of turbulent flow in a triangular microchannel. Physica E. 2017;93:179–89.

    Article  CAS  Google Scholar 

  57. Abbasian Arani AA, Akbari OA, Safaei MR, Marzban A, Alrashed AAAA, Ahmadi GhR, Nguyen TK. Heat transfer improvement of water/single-wall carbon nanotubes (SWCNT) nanofluid in a novel design of a truncated double layered microchannel heat sink. Int J Heat Mass Transf. 2017;113:780–95.

    Article  CAS  Google Scholar 

  58. Chein R, Chuang J. Experimental microchannel heat sink performance studies using nanofluids. Int J Therm Sci. 2007;46:57–66.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Tavakoli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tavakoli, M.R., Ali Akbari, O., Mohammadian, A. et al. Numerical study of mixed convection heat transfer inside a vertical microchannel with two-phase approach. J Therm Anal Calorim 135, 1119–1134 (2019). https://doi.org/10.1007/s10973-018-7460-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7460-z

Keywords

Navigation