Skip to main content
Log in

Influence of radiative heat transfer on the thermal characteristics of nanofluid flow over an inclined step in the presence of an axial magnetic field

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This research analyzes the influences of radiation heat transfer and Brownian movement on the thermal characteristics of nanofluid flow over an inclined step in the presence of an axial magnetic field. The Rosseland approximation is applied to simulate the divergence of radiative heat flux in the energy equation. The Al2O3–H2O and CuO–H2O nanofluids are considered as the working fluid. The \({\text{KKL}}\) correlation is used for modeling the Brownian movement influence on the effective viscosity and thermal conductivity. The impacts of radiation parameter \(\left( {0 \le Rd \le 1} \right)\), nanoparticles concentration \(\left( {0 \le \phi \le 0.04} \right)\) and Lorentz force \(\left( {0 \le Ha \le 60} \right)\) on temperature fields, mean bulk temperature and convective, radiative and total Nusselt numbers are examined with full details. The results show that the impact of CuO nanoparticles on the average of total heat transfer rates is greater that the influence of Al2O3 nanoparticles on them. Besides, the highest values of total heat transfer rates occur in the absence of magnetic field and for the highest values of \(Rd\) and \(\phi\) parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

\(B_{0}\) :

Magnetic field strength

\(C_{\text{p}}\) :

Specific heat (J kg−1 K−1)

\(h\) :

Channel height upstream of \({\text{BFS}}\), (m)

\(H\) :

Channel height downstream of \({\text{BFS}}\), (m)

\(Ha\) :

Hartmann number

\(\overrightarrow {{F_{\text{l}} }}\) :

Lorentz force

\(k\) :

Thermal conductivity, (W m−1 K−1)

\(L_{\text{D}}\) :

Channel length downstream of \({\text{BFS}}\), (m)

\(L_{\text{r}}\) :

Reattachment length, (m)

\(L_{\text{U}}\) :

Channel length upstream of \({\text{BFS}}\), (m)

\(Nu\) :

Nusselt number

\(p\) :

Pressure, (N m−2)

\(P\) :

Dimensionless pressure

\(Pr\) :

Prandtl number

\(\vec{q}\) :

Heat flux

\(Re\) :

Reynolds number

\(Rd\) :

Radiation parameter

\(T\) :

Temperature, (K)

\(\left( {u, v} \right)\) :

\(x\)- and \(y\)-components of velocity, (m s−1)

\(\left( {U, V} \right)\) :

Dimensionless \(X\)- and \(Y\)-component of velocity

\(\vec{V}\) :

Velocity vector

\(\phi\) :

Nanoparticles concentration

\(\mu\) :

Dynamic viscosity, (N s m−2)

\(\rho\) :

Density, (kg m−3)

\(\sigma\) :

Electrical conductivity

\(\varTheta\) :

Dimensionless temperature

\({\text{c}}\) :

Convective

\({\text{f}}\) :

Fluid

\({\text{in}}\) :

Inlet section

\({\text{nf}}\) :

Nanofluid

\({\text{r}}\) :

Radiative

\({\text{s}}\) :

Solid nanoparticles

\({\text{t}}\) :

Total

References

  1. Bovand M, Rashidi S, Esfahani JA. Optimum interaction between magnetohydrodynamics and nanofluid for thermal and drag management. J Thermophys Heat Transf. 2016;31(1):218–29.

    Google Scholar 

  2. Rashidi MM, Nasiri M, Khezerloo M, Laraqi N. Numerical investigation of magnetic field effect on mixed convection heat transfer of nanofluid in a channel with sinusoidal walls. J Magn Magn Mater. 2016;401:159–68.

    CAS  Google Scholar 

  3. Sheikholeslami M, Rokni HB. Simulation of nanofluid heat transfer in presence of magnetic field: a review. Int J Heat Mass Transf. 2017;115:1203–33.

    CAS  Google Scholar 

  4. Öztop HF, Sakhrieh A, Abu-Nada E, Al-Salem K. Mixed convection of MHD flow in nanofluid filled and partially heated wavy walled lid-driven enclosure. Int Commun Heat Mass Transf. 2017;86:42–51.

    Google Scholar 

  5. Sheikholeslami M, Gerdroodbary MB, Mousavi SV, Ganji DD, Moradi R. Heat transfer enhancement of ferrofluid inside an 90° elbow channel by non-uniform magnetic field. J Magn Magn Mater. 2018;460:302–11.

    CAS  Google Scholar 

  6. Sajjadi H, Delouei AA, Atashafrooz M, Sheikholeslami M. Double MRT lattice Boltzmann simulation of 3-D MHD natural convection in a cubic cavity with sinusoidal temperature distribution utilizing nanofluid. Int J Heat Mass Transf. 2018;126:489–503.

    CAS  Google Scholar 

  7. Mehryan SAM, Izadi M, Namazian Z, Chamkha AJ. Natural convection of multi-walled carbon nanotube–Fe3O4/water magnetic hybrid nanofluid flowing in porous medium considering the impacts of magnetic field-dependent viscosity. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08164-1.

    Article  Google Scholar 

  8. Animasaun IL, Mahanthesh B, Jagun AO, Bankole TD, Sivaraj R, Shah NA, Saleem S. Significance of Lorentz force and thermoelectric on the flow of 29 nm CuO–water nanofluid on an upper horizontal surface of a paraboloid of revolution. J Heat Transf. 2019;141(2):022402.

    CAS  Google Scholar 

  9. Izadi M, Mohebbi R, Delouei AA, Sajjadi H. Natural convection of a magnetizable hybrid nanofluid inside a porous enclosure subjected to two variable magnetic fields. Int J Mech Sci. 2019;151:154–69.

    Google Scholar 

  10. Sajjadi H, Delouei AA, Izadi M, Mohebbi R. Investigation of MHD natural convection in a porous media by double MRT lattice Boltzmann method utilizing MWCNT–Fe3O4/water hybrid nanofluid. Int J Heat Mass Transf. 2019;132:1087–104.

    CAS  Google Scholar 

  11. Sheikholeslami M. New computational approach for exergy and entropy analysis of nanofluid under the impact of Lorentz force through a porous media. Comput Methods Appl Mech Eng. 2019;344:319–33.

    Google Scholar 

  12. Sidik NAC, Mohammed HA, Alawi OA, Samion S. A review on preparation methods and challenges of nanofluids. Int Commun Heat Mass Transf. 2014;54:115–25.

    CAS  Google Scholar 

  13. Rashidi S, Bovand M, Esfahani JA, Ahmadi G. Discrete particle model for convective Al2O3–water nanofluid around a triangular obstacle. Appl Therm Eng. 2016;100:39–54.

    CAS  Google Scholar 

  14. Sidik NAC, Yazid MNAWM, Samion S, Musa MN, Mamat R. Latest development on computational approaches for nanofluid flow modeling: Navier–Stokes based multiphase models. Int Commun Heat Mass Transf. 2016;74:114–24.

    Google Scholar 

  15. Sheikholeslami M, Rokni HB. Free convection of CuO–H2O nanofluid in a curved porous enclosure using mesoscopic approach. Int J Hydrogen Energy. 2017;42(22):14942–9.

    CAS  Google Scholar 

  16. Maskaniyan M, Rashidi S, Esfahani JA. A two-way couple of Eulerian–Lagrangian model for particle transport with different sizes in an obstructed channel. Powder Technol. 2017;312:260–9.

    CAS  Google Scholar 

  17. Upadhyaa SM, Rajub CSK, Saleem S. Nonlinear unsteady convection on micro and nanofluids with Cattaneo–Christov heat flux. Results Phys. 2018;9:779–86.

    Google Scholar 

  18. Izadi M, Hashemi Pour SMR, Yasuri AK, Chamkha AJ. Mixed convection of a nanofluid in a three-dimensional channel. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7889-0.

    Article  Google Scholar 

  19. Nasiri H, Jamalabadi MYA, Sadeghi R, Safaei MR, Nguyen TK, Shadloo MS. A smoothed particle hydrodynamics approach for numerical simulation of nano-fluid flows. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7022-4.

    Article  Google Scholar 

  20. Afridi MI, Qasim M, Saleem S. Second law analysis of three dimensional dissipative flow of hybrid nanofluid. J Nanofluids. 2018;7(6):1272–80.

    Google Scholar 

  21. Nakhchi ME, Esfahani JA. Cu–water nanofluid flow and heat transfer in a heat exchanger tube equipped with cross-cut twisted tape. Powder Technol. 2018;339:985–94.

    CAS  Google Scholar 

  22. Akbarzadeh M, Rashidi S, Karimi N, Omar N. First and second laws of thermodynamics analysis of nanofluid flow inside a heat exchanger duct with wavy walls and a porous insert. J Therm Anal Calorim. 2019;135(1):177–94.

    CAS  Google Scholar 

  23. Nakhchi ME, Esfahani JA. Numerical investigation of turbulent Cu–water nanofluid in heat exchanger tube equipped with perforated conical rings. Adv Powder Technol. 2019;30(7):1338–47.

    CAS  Google Scholar 

  24. Rashidi S, Javadi P, Esfahani JA. Second law of thermodynamics analysis for nanofluid turbulent flow inside a solar heater with the ribbed absorber plate. J Therm Anal Calorim. 2019;135(1):551–63.

    CAS  Google Scholar 

  25. Rashidi S, Eskandarian M, Mahian O, Poncet S. Combination of nanofluid and inserts for heat transfer enhancement. J Therm Anal Calorim. 2019;135(1):437–60.

    CAS  Google Scholar 

  26. Nakhchi ME, Esfahani JA. Entropy generation of turbulent Cu–water nanofluid flow in a heat exchanger tube fitted with perforated conical rings. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08169-w.

    Article  Google Scholar 

  27. Oztop HF, Al-Salem K, Pop I. MHD mixed convection in a lid-driven cavity with corner heater. Int J Heat Mass Transf. 2011;54:3494–504.

    Google Scholar 

  28. Shirvan KM, Mamourian M, Mirzakhanlari S, Moghiman M. Investigation on effect of magnetic field on mixed convection heat transfer in a ventilated square cavity. Proc Eng. 2015;127:1181–8.

    Google Scholar 

  29. Sajjadi H, Kefayati GR. MHD turbulent and laminar natural convection in a square cavity utilizing lattice Boltzmann method. Heat Transf Asian Res. 2016;45(8):795–814.

    Google Scholar 

  30. Rashidi S, Esfahani JA, Maskaniyan M. Applications of magnetohydrodynamics in biological systems-a review on the numerical studies. J Magn Magn Mater. 2017;439:358–72.

    CAS  Google Scholar 

  31. Babu MJ, Sandeep N, Saleem S. Free convective MHD Cattaneo-Christov flow over three different geometries with thermophoresis and Brownian motion. Alex Eng J. 2017;56(4):659–69.

    Google Scholar 

  32. Kumar MS, Sandeep N, Kumar BR, Saleem S. Effect of aligned magnetic field on MHD squeezing flow of Casson fluid between parallel plates. Defect Diffus Forum. 2018;384:1–11.

    Google Scholar 

  33. Sajjadi H, Delouei AA, Sheikholeslami M, Atashafrooz M, Succi S. Simulation of three dimensional MHD natural convection using double MRT lattice Boltzmann method. Phys A. 2019;515:474–96.

    CAS  Google Scholar 

  34. Sheikholeslami M, Ganji DD, Javed MY, Ellahi R. Effect of thermal radiation on magnetohydrodynamics nanofluid flow and heat transfer by means of two phase model. J Magn Magn Mater. 2015;374:36–43.

    CAS  Google Scholar 

  35. Shehzad SA, Hayat T, Alsaedi A, Ahmad B. Effects of thermophoresis and thermal radiation in mixed convection three-dimensional flow of Jeffrey fluid. Appl Math Mech. 2015;36(5):655–68.

    Google Scholar 

  36. Hussain T, Hayat T, Shehzad SA, Alsaedi A, Chen B. A model of solar radiation and joule heating in flow of third grade nanofluid. Zeitschrift für Naturforschung A. 2015;70(3):177–84.

    CAS  Google Scholar 

  37. Shehzad SA, Abdullah Z, Alsaedi A, Abbasi FM, Hayat T. Thermally radiative three-dimensional flow of Jeffrey nanofluid with internal heat generation and magnetic field. J Magn Magn Mater. 2016;397:108–14.

    CAS  Google Scholar 

  38. Sheikholeslami M, Shehzad SA. Thermal radiation of ferrofluid in existence of Lorentz forces considering variable viscosity. Int J Heat Mass Transf. 2017;109:82–92.

    CAS  Google Scholar 

  39. Sheikholeslami M. Magnetic field influence on nanofluid thermal radiation in a cavity with tilted elliptic inner cylinder. J Mol Liq. 2017;229:137–47.

    CAS  Google Scholar 

  40. Rashid M, Khan MI, Hayat T, Khan MI, Alsaedi A. Entropy generation in flow of ferromagnetic liquid with nonlinear radiation and slip condition. J Mol Liq. 2019;276:441–52.

    CAS  Google Scholar 

  41. Ghalambaz M, Sabour M, Pop I. Free convection in a square cavity filled by a porous medium saturated by a nanofluid: viscous dissipation and radiation effects. Eng Sci Technol Int J. 2016;19(3):1244–53.

    Google Scholar 

  42. Sheikholeslami M, Hayat T, Alsaedi A. MHD free convection of Al2O3–water nanofluid considering thermal radiation: a numerical study. Int J Heat Mass Transf. 2016;96:513–24.

    CAS  Google Scholar 

  43. Safaei MR, Karimipour A, Abdollahi A, Nguyen TK. The investigation of thermal radiation and free convection heat transfer mechanisms of nanofluid inside a shallow cavity by lattice Boltzmann method. Phys A. 2018;509:515–35.

    CAS  Google Scholar 

  44. Sheikholeslami M, Sajjadi H, Delouei AA, Atashafrooz M, Li Z. Magnetic force and radiation influences on nanofluid transportation through a permeable media considering Al2O3 nanoparticles. J Therm Anal Calorim. 2019;136(6):2477–85.

    CAS  Google Scholar 

  45. Sheikholeslami M, Rokni HB. Numerical simulation for impact of Coulomb force on nanofluid heat transfer in a porous enclosure in presence of thermal radiation. Int J Heat Mass Transf. 2018;118:823–31.

    CAS  Google Scholar 

  46. Feng YY, Wang CH. Discontinuous finite element method with a local numerical flux scheme for radiative transfer with strong inhomogeneity. Int J Heat Mass Transf. 2018;126:783–95.

    Google Scholar 

  47. Wang CH, Feng YY, Yue K, Zhang XX. Discontinuous finite element method for combined radiation-conduction heat transfer in participating media. Int Commun Heat Mass Transf. 2019;108, 104287. https://doi.org/10.1016/j.icheatmasstransfer.2019.104287.

    Google Scholar 

  48. Nouri-Borujerdi A, Nakhchi ME. Experimental study of convective heat transfer in the entrance region of an annulus with an external grooved surface. Exp Thermal Fluid Sci. 2018;98:557–62.

    Google Scholar 

  49. Nakhchi ME. Experimental optimization of geometrical parameters on heat transfer and pressure drop inside sinusoidal wavy channels. Thermal Sci Eng Prog. 2019;9:121–31.

    Google Scholar 

  50. Nouri-Borujerdi A, Nakhchi ME. Friction factor and Nusselt number in annular flows with smooth and slotted surface. Heat Mass Transf. 2019;55(3):645–53.

    CAS  Google Scholar 

  51. Oztop HF, Mushatet KS, Yılmaz İ. Analysis of turbulent flow and heat transfer over a double forward facing step with obstacles. Int Commun Heat Mass Transf. 2012;39(9):1395–403.

    Google Scholar 

  52. Atashafrooz M, Gandjalikhan Nassab SA. Simulation of laminar mixed convection recess flow combined with radiation heat transfer. Iran J Sci Technol Trans Mech Eng. 2013;37(M1):71–5.

    Google Scholar 

  53. Selimefendigil F, Oztop HF. Numerical analysis of laminar pulsating flow at a backward facing step with an upper wall mounted adiabatic thin fin. Comput Fluids. 2013;88:93–107.

    Google Scholar 

  54. Atashafrooz M, Nassab SAG, Lari K. Application of full-spectrum k-distribution method to combined non-gray radiation and forced convection flow in a duct with an expansion. J Mech Sci Technol. 2015;29(2):845–59.

    Google Scholar 

  55. Atashafrooz M, Gandjalikhan Nassab SA, Lari K. Numerical analysis of interaction between non-gray radiation and forced convection flow over a recess using the full-spectrum k-distribution method. Heat Mass Transf. 2016;52(2):361–77.

    CAS  Google Scholar 

  56. Kherbeet AS, Safaei MR, Mohammed HA, Salman BH, Ahmed HE, Alawi OA, Al-Asadi MT. Heat transfer and fluid flow over microscale backward and forward facing step: a review. Int Commun Heat Mass Transf. 2016;76:237–44.

    CAS  Google Scholar 

  57. Atashafrooz M, Gandjalikhan Nassab SA, Lari K. Coupled thermal radiation and mixed convection step flow of non-gray gas. J Heat Transf (ASME). 2016;138(7):072701–9.

    Google Scholar 

  58. Nouri-Borujerdi A, Moazezi A. Investigation of obstacle effect to improve conjugate heat transfer in backward facing step channel using fast simulation of incompressible flow. Heat Mass Transf. 2018;54(1):135–50.

    CAS  Google Scholar 

  59. Abu-Nada E. Application of nanofluids for heat transfer enhancement of separated flows encountered in a backward facing step. Int J Heat Fluid Flow. 2008;29:242–9.

    CAS  Google Scholar 

  60. Al-aswadi AA, Mohammed HA, Shuaib NH, Campo A. Laminar forced convection flow over a backward facing step using nanofluids. Int Commun Heat Mass Transf. 2010;37(8):950–7.

    CAS  Google Scholar 

  61. Mohammed HA, Golieskardi M, Munisamy KM, Wahid MA. Combined convection heat transfer of nanofluids flow over forward facing step in a channel having a blockage. Appl Mech Mater. 2013;388:185–91.

    Google Scholar 

  62. Safaei MR, Togun H, Vafai K, Kazi SN, Badarudin A. Investigation of heat transfer enhancement in a forward-facing contracting channel using FMWCNT nanofluids. Numer Heat Transf A: Appl. 2014;66(12):1321–40.

    CAS  Google Scholar 

  63. Togun H, Safaei MR, Sadri R, Kazi SN, Badarudin A, Hooman K, Sadeghinezhad E. Numerical simulation of laminar to turbulent nanofluid flow and heat transfer over a backward-facing step. Appl Math Comput. 2014;239:153–70.

    Google Scholar 

  64. Mohammed HA, Alawi OA, Wahid MA. Mixed convective nanofluid flow in a channel having backward-facing step with a baffle. Powder Technol. 2015;275:329–43.

    CAS  Google Scholar 

  65. Mohammed HA, Al-aswadi AA, Abu-Mulaweh HI, Shuaib NH. Influence of nanofluids on mixed convective heat transfer over a horizontal backward facing step. Heat Transf Asian Res. 2011;40(4):287–307.

    Google Scholar 

  66. Alawi OA, Sidik NAC, Kazi SN, Abdolbaqi MK. Comparative study on heat transfer enhancement and nanofluids flow over backward and forward facing steps. J Adv Res Fluid Mech Thermal Sci. 2016;23(1):25–49.

    Google Scholar 

  67. Selimefendigil F, Oztop HF. Numerical study of forced convection of nanofluid flow over a backward facing step with a corrugated bottom wall in the presence of different shaped obstacles. Heat Transf Eng. 2016;37(15):1280–92.

    CAS  Google Scholar 

  68. Kherbeet AS, Mohammed HA, Salman BH, Ahmed HE, Alawi OA, Rashidi MM. Experimental study of nanofluid flow and heat transfer over microscale backward- and forward-facing steps. Exp Thermal Fluid Sci. 2015;65:13–21.

    CAS  Google Scholar 

  69. Kherbeet AS, Mohammed HA, Ahmed HE, Salman BH, Alawi OA, Safaei MR, Khazaal MT. Mixed convection nanofluid flow over microscale forward-facing step: effect of inclination and step heights. Int Commun Heat Mass Transf. 2016;78:145–54.

    CAS  Google Scholar 

  70. Atashafrooz M. Effects of Ag–water nanofluid on hydrodynamics and thermal behaviors of three-dimensional separated step flow. Alex Eng J. 2018;57:4277–85.

    Google Scholar 

  71. Abbassi H, Nassrallah SB. MHD flow and heat transfer in a backward-facing step. Int Commun Heat Mass Transf. 2007;34(2):231–7.

    Google Scholar 

  72. Selimefendigil F, Öztop HF. Influence of inclination angle of magnetic field on mixed convection of nanofluid flow over a backward facing step and entropy generation. Adv Powder Technol. 2015;26(6):1663–75.

    CAS  Google Scholar 

  73. Atashafrooz M, Sheikholeslami M, Sajjadi H, Delouei AA. Interaction effects of an inclined magnetic field and nanofluid on forced convection heat transfer and flow irreversibility in a duct with an abrupt contraction. J Magn Magn Mater. 2019;478:216–26.

    CAS  Google Scholar 

  74. Atashafrooz M. The effects of buoyancy force on mixed convection heat transfer of MHD nanofluid flow and entropy generation in an inclined duct with separation considering Brownian motion effects. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08363-w.

    Article  Google Scholar 

  75. Sheikholeslami M, Abelman S, Ganji DD. Numerical simulation of MHD nanofluid flow and heat transfer considering viscous dissipation. Int J Heat Mass Transf. 2014;79:212–22.

    Google Scholar 

  76. Sheikholeslami M, Ganji DD. Nanofluid flow and heat transfer between parallel plates considering Brownian motion using DTM. Comput Methods Appl Mech Eng. 2015;283:651–63.

    Google Scholar 

  77. Patankar SV, Spalding DB. A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. Int J Heat Mass Transf. 1972;15(10):1787–806.

    Google Scholar 

  78. Atashafrooz M, Gandjalikhan Nassab SA. Simulation of three-dimensional laminar forced convection flow of a radiating gas over an inclined backward-facing step in a duct under bleeding condition. Inst Mech Eng C, J Mech Eng Sci. 2012;227(2):332–45.

    Google Scholar 

  79. Atashafrooz M, Gandjalikhan Nassab SA. Numerical analysis of laminar forced convection recess flow with two inclined steps considering gas radiation effect. Comput Fluids. 2012;66:167–76.

    Google Scholar 

  80. Atashafrooz M, Gandjalikhan Nassab SA. Combined heat transfer of radiation and forced convection flow of participating gases in a three-dimensional recess. J Mech Sci Technol. 2012;26(10):3357–68.

    Google Scholar 

  81. Aminossadati SM, Raisi A, Ghasemi B. Effects of magnetic field on nanofluid forced convection in a partially heated microchannel. Int J Non-Linear Mech. 2011;46:1373–82.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Atashafrooz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atashafrooz, M. Influence of radiative heat transfer on the thermal characteristics of nanofluid flow over an inclined step in the presence of an axial magnetic field. J Therm Anal Calorim 139, 3345–3360 (2020). https://doi.org/10.1007/s10973-019-08672-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08672-0

Keywords

Navigation