Skip to main content
Log in

Momentum and heat transfer characteristics of three-dimensional CuO/water nanofluid flow in a horizontal annulus: influences of nanoparticle volume fraction and its mean diameter

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Both experimental and numerical studies are unanimous in enhancing heat transfer for forced convection of nanoparticle suspensions, while the available works pertaining to buoyancy-induced heat transfer in nanofluids lead to considerably diverse or even contradictory conclusions. In this work, attempt is made to explore the influences of the presence of nanoparticles, with volume fraction of \(0\le \phi \le 0. 0 4\) and mean diameter of \(28 \le D_{\text{p}} \le 82\,{\text{nm}}\), on the three-dimensional laminar natural convection in a horizontal annulus saturated with CuO/water nanofluid. Further efforts have been made to examine the discrepancies in simulation results due to the use of different models for nanofluid properties. A FORTRAN computer code based on the finite volume method is developed for the solution of the general coupled equations. Results demonstrate that the hydrothermal behaviors of nanofluid depend strongly on the complex interaction between \(\phi\) and \(D_{\text{p}}\). Compared to pure water, the nanofluids especially with lower solid volume fraction and smaller nanoparticle diameter show a superior potential for improving heat transfer. In addition, the overall heat transfer is seen to be under-predicted by the classical models without considering nanoparticles’ Brownian motion, whereas the degree of underestimation progressively diminishes as \(\phi\) and \(D_{\text{p}}\) increase. The results of the current work are believed to be useful for the efficient design of thermal equipment using nanofluid as working medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

\(c_{{p}}\) :

Specific heat (J kg−1 K−1)

\(D_{\text{p}}\) :

Particle diameter (m)

\(En\) :

Enhancement of heat transfer

\(g\) :

Acceleration due to gravity (m s−2)

\(H\) :

Height of the annulus (m)

\(k\) :

Thermal conductivity (W m−1 K−1)

\(L\) :

Annular gap (m)

\(n\) :

Time level

\(Nu\) :

Local Nusselt number

\({{Nu}}_{{{\bar{\text{z}}}}}\) :

Axially averaged Nusselt number

\({{Nu}}_{{ 3 {\text{D}}}}\) :

Overall Nusselt number

\(p\) :

Pressure (Pa)

\({Pr}\) :

Prandtl number

\(r\) :

Radial coordinate

\(R_{\text{i}} , \, R_{\text{o}}\) :

Radii of inner and outer cylinders (m)

\(R_{\text{f}}\) :

Interfacial thermal resistance (m2 K W−1)

\({Ra}\) :

Rayleigh number

\(t\) :

Time (s)

\(T\) :

Temperature (K)

\(T_{\text{h}} , \, T_{\text{c}}\) :

Temperature of heated and cooled walls (K)

\(u\) :

Velocity component in \(r\) direction (m s−1)

\(v\) :

Velocity component in \(\varphi\) direction (m s−1)

\(V\) :

Velocity (m s−1)

\(w\) :

Velocity component in \(z\) direction (m s−1)

\(z\) :

Axial coordinate

\(\alpha\) :

Thermal diffusivity (m2 s−1)

\(\beta\) :

Thermal expansion coefficient (K−1)

\(\chi\) :

Time-dependent variable

\(\phi\) :

Volume fraction

\(\varphi\) :

Azimuthal coordinate

\(\mu\) :

Dynamic viscosity (Pa s)

\(\theta\) :

Dimensionless temperature

\(\rho\) :

Density (kg m−3)

\(\upsilon\) :

Kinematic viscosity (m2 s−1)

\({\text{i}},{\text{ o}}\) :

Inner and outer cylinder walls

\({\text{f}},{\text{ nf}},{\text{ s}}\) :

Base fluid, nanofluid and solid particle

\({ \hbox{max} }\) :

Maximum value

\({\text{opt}}\) :

Optimum value

\({\text{ref}}\) :

Reference quantity

\(*\) :

Dimensionless symbol

References

  1. Togun H, Abdulrazzaq T, Kazi SN, Badarudin A, Kadhum AAH, Sadeghinezhad E. A review of studies on forced, natural and mixed heat transfer to fluid and nanofluid flow in an annular passage. Renew Sustain Energy Rev. 2014;39:835–56.

    Google Scholar 

  2. Dawood HK, Mohammed HA, Sidik NAC, Munisamy KM, Wahid MA. Forced, natural and mixed-convection heat transfer and fluid flow in annulus: a review. Int Commun Heat Mass Transf. 2015;62:45–57.

    Google Scholar 

  3. Li M, Zhang LW, Liu G. Estimation of thermal properties of soil and backfilling material from thermal response tests (TRTs) for exploiting shallow geothermal energy: sensitivity, identifiability, and uncertainty. Renew Energy. 2019;132:1263–70.

    Google Scholar 

  4. Alsabery AI, Naganthran K, Azizul FM, Hashim I, Nazar R. Numerical study of conjugate natural convection heat transfer of a blood filled horizontal concentric annulus. Int Commun Heat Mass Transf. 2020;114:104568.

    Google Scholar 

  5. Zheng NB, Yan F, Zhang K, Zhou T, Sun ZQ. A review on single-phase convective heat transfer enhancement based on multi-longitudinal vortices in heat exchanger tubes. Appl Therm Eng. 2020;164:114475.

    Google Scholar 

  6. Maxwell JC. A treatise on electricity and magnetism. 3rd ed. New York: Dover; 1954.

    Google Scholar 

  7. Agarwal PK. Transport phenomena in multi-particle systems-II. Particle-fluid heat and mass transfer. Chem Eng Sci. 1988;43(9):2501–10.

    CAS  Google Scholar 

  8. Hetsroni G, Rozenblit R. Heat transfer to a liquid-solid mixture in a flume. Int J Multiph Flow. 1994;20(4):671–89.

    CAS  Google Scholar 

  9. Choi SUS. Enhancing thermal conductivity of fluids with nanoparticles. In: Siginer DA, Wang HP, editors. Developments and applications of non-Newtonian flows, FED-vol, vol. 66., 231/MD-volNew York: ASME; 1995. p. 99–105.

    Google Scholar 

  10. Izadi M, Behzadmehr A, Jalali-Vahida D. Numerical study of developing laminar forced convection of a nanofluid in an annulus. Int J Therm Sci. 2009;48(11):2119–29.

    CAS  Google Scholar 

  11. Moghari RM, Akbarinia A, Shariat M, Talebi F, Laur R. Two phase mixed convection Al2O3-water nanofluid flow in an annulus. Int J Multiph Flow. 2011;37(6):585–95.

    Google Scholar 

  12. Moghari RM, Mujumdar AS, Shariat M, Talebi F, Sajjadi SM, Akbarinia A. Investigation effect of nanoparticle mean diameter on mixed convection Al2O3-water nanofluid flow in an annulus by two phase mixture model. Int Commun Heat Mass Transf. 2013;49:25–35.

    CAS  Google Scholar 

  13. Moghari RM, Talebi F, Rafee R, Shariat M. Numerical study of pressure drop and thermal characteristics of Al2O3-water nanofluid flow in horizontal annuli. Heat Transf Eng. 2015;36(2):166–77.

    Google Scholar 

  14. Sadaghiani AK, Yildiz M, Koşar A. Numerical modeling of convective heat transfer of thermally developing nanofluid flows in a horizontal microtube. Int J Therm Sci. 2016;109:54–69.

    CAS  Google Scholar 

  15. Dawood HK, Mohammed HA, Sidik NAC, Munisamy KM. Numerical investigation on heat transfer and friction factor characteristics of laminar and turbulent flow in an elliptic annulus utilizing nanofluid. Int Commun Heat Mass Transf. 2015;66:148–57.

    CAS  Google Scholar 

  16. Dawood HK, Mohammed HA, Sidik NAC, Munisamy KM, Alawi OA. Heat transfer augmentation in concentric elliptic annular by ethylene glycol based nanofluids. Int Commun Heat Mass Transf. 2017;82:29–39.

    CAS  Google Scholar 

  17. Gorjaei AR, Soltani M, Bahiraei M, Kashkooli FM. CFD simulation of nanofluid forced convection inside a three-dimensional annulus by two-phase mixture approach: heat transfer and entropy generation analyses. Int J Mech Sci. 2018;146:396–404.

    Google Scholar 

  18. Benkhedda M, Boufendi T, Touahri S. Laminar mixed convective heat transfer enhancement by using Ag-TiO2-water hybrid nanofluid in a heated horizontal annulus. Heat Mass Transf. 2018;54(9):2799–814.

    CAS  Google Scholar 

  19. Abu-Nada E, Masoud Z, Hijazi A. Natural convection heat transfer enhancement in horizontal concentric annuli using nanofluids. Int Commun Heat Mass Transf. 2008;35(5):657–65.

    CAS  Google Scholar 

  20. Abu-Nada E. Effects of variable viscosity and thermal conductivity of Al2O3-water nanofluid on heat transfer enhancement in natural convection. Int J Heat Fluid Flow. 2009;30(4):679–90.

    CAS  Google Scholar 

  21. Abu-Nada E. Effects of variable viscosity and thermal conductivity of CuO-water nanofluid on heat transfer enhancement in natural convection: mathematical model and simulation. J Heat Transf. 2010;132(5):052401.

    Google Scholar 

  22. Yu ZT, Xu X, Hu YC, Fan LW, Cen KF. A numerical investigation of transient natural convection heat transfer of aqueous nanofluids in a horizontal concentric annulus. Int J Heat Mass Transf. 2012;55(4):1141–8.

    CAS  Google Scholar 

  23. Sheremet MA, Pop I. Free convection in a porous horizontal cylindrical annulus with a nanofluid using Buongiorno’s model. Comput Fluids. 2015;118:182–90.

    CAS  Google Scholar 

  24. Sheremet MA, Pop I. Natural convection in a horizontal cylindrical annulus filled with a porous medium saturated by a nanofluid using Tiwari and Das’ nanofluid model. Eur Phys J Plus. 2015;130:107.

    Google Scholar 

  25. Cianfrini M, Corcione M, Quintino A. Natural convection heat transfer of nanofluids in annular spaces between horizontal concentric cylinders. Appl Therm Eng. 2011;31(17–18):4055–63.

    CAS  Google Scholar 

  26. Corcione M, Habib E, Quintino A. A two-phase numerical study of buoyancy-driven convection of alumina-water nanofluids in differentially-heated horizontal annuli. Int J Heat Mass Transf. 2013;65:327–38.

    CAS  Google Scholar 

  27. Wang W, Li BW, Rao ZH, Liu G, Liao SM. Two- and three-dimensional simulation of natural convection flow of CuO-water in a horizontal concentric annulus considering nanoparticles’ Brownian motion. Numer Heat Transf Part A Appl. 2019;76(12):967–90.

    CAS  Google Scholar 

  28. Huang XJ, Vafai K, Li YR. Nanofluid buoyancy-driven heat transfer in three-dimensional horizontal annuli. Eur J Mech B Fluids. 2020;82:66–82.

    Google Scholar 

  29. Parvin S, Nasrin R, Alim MA, Hossain NF, Chamkha AJ. Thermal conductivity variation on natural convection flow of water-alumina nanofluid in an annulus. Int J Heat Mass Transf. 2012;55:5268–74.

    CAS  Google Scholar 

  30. Ashorynejad HR, Mohamad AA, Sheikholeslami M. Magnetic field effects on natural convection flow of a nanofluid in a horizontal cylindrical annulus using Lattice Boltzmann method. Int J Therm Sci. 2013;64:240–50.

    CAS  Google Scholar 

  31. Mirzaie M, Lakzian E. Natural convection of Cu-water nanofluid near water density inversion in horizontal annulus with different arrangements of discrete heat source-Sink pair. Adv Powder Technol. 2016;27:1337–46.

    CAS  Google Scholar 

  32. Zhang CL, Zheng LC, Jiang YY, Zhang XX. Unsteady natural convection heat transfer of nanofluid in an annulus with a sinusoidally heated source. Numer Heat Transf Part A Appl. 2016;69(1):97–108.

    CAS  Google Scholar 

  33. Uddin MJ, Rahman MM, Alam MS. Analysis of natural convective heat transport in homocentric annuli containing nanofluids with an oriented magnetic field using nonhomogeneous dynamic model. Neural Comput Appl. 2018;30:3189–208.

    Google Scholar 

  34. Harab BA, Calisir T, Baskaya S. Numerical investigation of transient natural convection heat transfer of non-Newtonian nanofluids between eccentric annulus. Arab J Sci Eng. 2019;44:5631–46.

    CAS  Google Scholar 

  35. Bouzerzour A, Djezzar M, Oztop HF, Tayebi T, Hamdeh NA. Natural convection in nanofluid filled and partially heated annulus: effect of different arrangements of heaters. Phys A. 2020;538:122479.

    CAS  Google Scholar 

  36. Mahian O, Kolsi L, Amani M, Estellé P, Ahmadi G, Kleinstreuer C, Marshall JS, Siavashi M, Taylor RA, Niazmand H, Wongwises S, Hayat T, Kolanjiyil A, Kasaeian A, Pop I. Recent advances in modeling and simulation of nanofluid flows-Part I: fundamentals and theory. Phys Rep. 2019;790:1–48.

    CAS  Google Scholar 

  37. Mahian O, Kolsi L, Amani M, Estellé P, Ahmadi G, Kleinstreuer C, Marshall JS, Taylor RA, Abu-Nada E, Rashidi S, Niazmand H, Wongwises S, Hayat T, Kasaeian A, Pop I. Recent advances in modeling and simulation of nanofluid flows-Part II: applications. Phys Rep. 2019;791:1–59.

    CAS  Google Scholar 

  38. Ravnik J, Škerget L. A numerical study of nanofluid natural convection in a cubic enclosure with a circular and an ellipsoidal cylinder. Int J Heat Mass Transf. 2015;89:596–605.

    CAS  Google Scholar 

  39. Sheremet MA, Pop I, Rahman MM. Three-dimensional natural convection in a porous enclosure filled with a nanofluid using Buongiorno’s mathematical model. Int J Heat Mass Transf. 2015;82:396–405.

    Google Scholar 

  40. Al-Rashed AAAA, Kolsi L, Kalidasan K, Malekshah EH, Borjini MN, Kanna PR. Second law analysis of natural convection in a CNT-water nanofluid filled inclined 3D cavity with incorporated Ahmed body. Int J Mech Sci. 2017;130:399–415.

    Google Scholar 

  41. Selimefendigil F, Öztop HF. Control of natural convection in a CNT-water nanofluid filled 3D cavity by using an inner T-shaped obstacle and thermoelectric cooler. Int J Mech Sci. 2020;169:105104.

    Google Scholar 

  42. Alsabery AI, Sheremet MA, Chamkha AJ, Hashim I. Energy transport of two-phase nanofluid approach inside a three-dimensional lid-driven cubic cavity containing solid cylinder and heat source. Chem Eng Process. 2020;154:108010.

    CAS  Google Scholar 

  43. Koo J, Kleinstreuer C. A new thermal conductivity model for nanofluids. J Nanopart Res. 2004;6(6):577–88.

    Google Scholar 

  44. Koo J, Kleinstreuer C. Laminar nanofluid flow in microheat-sinks. Int J Heat Mass Transf. 2005;48(13):2652–61.

    CAS  Google Scholar 

  45. Brinkman HC. The viscosity of concentrated suspensions and solutions. J Chem Phys. 1952;20(4):571.

    CAS  Google Scholar 

  46. Garoosi F, Garoosi S, Hooman K. Numerical simulation of natural convection and mixed convection of the nanofluid in a square cavity using Buongiorno model. Powder Technol. 2014;268:279–92.

    CAS  Google Scholar 

  47. Miroshnichenko IV, Sheremet MA, Oztop HF, Al-Salem K. MHD natural convection in a partially open trapezoidal cavity filled with a nanofluid. Int J Mech Sci. 2016;119:294–302.

    Google Scholar 

  48. Khanafer K, Vafai K. A critical synthesis of thermophysical characteristics of nanofluids. Int J Heat Mass Transf. 2011;54(19–20):4410–28.

    CAS  Google Scholar 

  49. Gupta M, Singh V, Kumar R, Said Z. A review on thermophysical properties of nanofluids and heat transfer applications. Renew Sustain Energy Rev. 2017;74:638–70.

    CAS  Google Scholar 

  50. Murshed SMS, Estellé P. A state of the art review on viscosity of nanofluids. Renew Sustain Energy Rev. 2017;76:1134–52.

    CAS  Google Scholar 

  51. Li J. Computational analysis of nanofluid flow in microchannels with applications to micro-heat sinks and bio-MEMS (Ph.D. thesis). NC State University, Raleigh, NC, USA, 2008.

  52. Chorin AJ. Numerical solution of the Navier-Stokes equations. Math Comput. 1968;22:745–62.

    Google Scholar 

  53. Chorin AJ. A numerical method for solving incompressible viscous flow problems. J Comput Phys. 1967;2(1):12–26.

    Google Scholar 

  54. Nguyen CT, Desgranges F, Roy G, Galanis N, Maré T, Boucher S, Mintsa HA. Temperature and particle-size dependent viscosity data for water-based nanofluids-Hysteresis phenomenon. Int J Heat Fluid Flow. 2007;28(6):1492–506.

    CAS  Google Scholar 

  55. Kuo DC, Morales JC, Ball KS. Combined natural convection and volumetric radiation in a horizontal annulus: spectral and finite volume predictions. J Heat Transf. 1999;121(3):610–5.

    CAS  Google Scholar 

  56. Petrone G, Chénier E, Lauriat G. Three-dimensional study of multiple transitions for natural convection in horizontal annuli. Int J Heat Mass Transf. 2006;49(7–8):1231–41.

    CAS  Google Scholar 

  57. Wang W, Li BW, Hu ZM. Influence of optical parameters on magnetohydrodynamic natural convection in a horizontal cylindrical annulus. J Heat Transf. 2019;141(6):062502.

    CAS  Google Scholar 

  58. Wang W, Li BW, Varghese PL, Leng XY, Tian XY. Numerical analysis of three-dimensional MHD natural convection flow in a short horizontal cylindrical annulus. Int Commun Heat Mass Transf. 2018;98:273–85.

    Google Scholar 

Download references

Acknowledgements

The research work is supported by the Foundation of National Sustainable Development Agenda (2019sfq02), the National Natural Science Foundation of China (52076218), the China Postdoctoral Science Foundation (Nos. 2019M652800), and the Hunan Provincial Natural Science Foundation of China (2020JJ4722). The support for this work by the Postdoctoral Foundation of Central South University is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng-Ming Liao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Liu, G., Li, BW. et al. Momentum and heat transfer characteristics of three-dimensional CuO/water nanofluid flow in a horizontal annulus: influences of nanoparticle volume fraction and its mean diameter. J Therm Anal Calorim 147, 1757–1772 (2022). https://doi.org/10.1007/s10973-020-10395-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10395-6

Keywords

Navigation