Skip to main content
Log in

Thermogravimetric analysis and microstructure of alkali-activated metakaolin cement pastes

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This study reports the thermogravimetric analysis and microstructure characteristic of alkali-activated metakaolin cement pastes using Na2SiO3-to-NaOH ratio of 1.5. Metakaolin was used at 70, 80, 90, 95 and 100% by total mass of binder, and Portland cement (ASTM Type I) was used at 0–30% by total mass. Alkali/binder ratio of 1.5 and water curing at 23 °C was used. Thermogravimetric analysis and scanning electron micrographs showed that at 70% metakaolin the major phase found is calcium silicate hydrate (C–S–H) which is normally found in normal water-based cement paste mixes with a slight shoulder peak of N–A–S–H. At higher metakaolin content (80% and higher), sodium aluminium silicate hydrate (N–A–S–H) phase was detected as found in geopolymer, and this is the case in 100% metakaolin mix where essentially only N–A–S–H was found. The compressive strength results were found in the region of 43–48 MPa with higher strength found at higher metakaolin content. Therefore, the results of alkali-activated metakaolin cement paste mixes showed interesting change in the major phase of C–S–H to N–A–S–H depending on amount of Portland cement and metakaolin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Statista, Cement production globally and in the U.S. from 2010 to 2017 (in million metric tons); 2018. https://www.statista.com/statistics/219343/cement-production-worldwide/. Accessed 1 Nov 2018.

  2. Belmokhtar N, El Ayadi H, Ammari M, Brigui J, Ben Allal L. Effect of structural and textural properties of a ceramic industrial sludge and kaolin on the hardened geopolymer properties. Appl Clay Sci. 2018;146:1–9.

    Article  Google Scholar 

  3. Bich CH, Ambroise J, Pera J. Influence of degree of dehidroxylation on the pozzolanic activity of metakaolin. Appl Clay Sci. 2009;194:200–44.

    Google Scholar 

  4. Khan MI, Khan HU, Azizli K, Sufian S, Man Z, Siyal AA, Muhammad N, Rehman MF. The pyrolysis kinetics of the conversion of Malaysian kaolin to metakaolin. Appl Clay Sci. 2017;146:152–61.

    Article  Google Scholar 

  5. Murat M. Hydration reaction and hardening of calcined clays and related minerals. I. Preliminary Investigation on metakaolinite. Cem Concr Res. 1983;13:259–66.

    Article  CAS  Google Scholar 

  6. Ambroise J, Murat M, Pera J. Hydration reaction and hardening of calcined clays and related minerals. IV. Experimental conditions for strength improvement on metakaolin minicylinders. Cem Concr Res. 1985;15:83–8.

    Article  CAS  Google Scholar 

  7. Palou M, Kuzielová E, Žemlička M, Novotný R, Másilko J. The effect of metakaolin upon the formation of ettringite in metakaolin–lime–gypsum ternary systems. J Therm Anal Calorim. 2018;133:77–86.

    Article  CAS  Google Scholar 

  8. Malhotra VM, Mehta PK. Pozzolanic and cementitious materials. Ottawa: Gordon and Breach Publisher; 1996.

    Google Scholar 

  9. Amer AA, El-Hoseny S. Properties and performance of metakaolin pozzolanic cement pastes. J Therm Anal Calorim. 2017;129(1):33–44.

    Article  CAS  Google Scholar 

  10. Badogiannis E, Kakali G, Tsivilis S. Metakaolin as supplementary cementitious material: optimization of kaolin to metakaolin conversion. J Therm Anal Calorim. 2005;81(2):457–62.

    Article  CAS  Google Scholar 

  11. Love CA, Richardson IG, Brough AR. Composition and structure of C–S–H in white Portland cement-20% metakaolin pastes hydrated at 25 °C. Cem Concr Res. 2007;37(2):109–17.

    Article  CAS  Google Scholar 

  12. Boháč M, Palou M, Novotný R, Másilko J, Šoukal F, Opravil T. Influence of temperature on early hydration of portland cement–metakaolin–slag system. J Therm Anal Calorim. 2017;127(1):309–18.

    Article  Google Scholar 

  13. Xu MX, He Y, Liu ZH, Tong ZF, Cui XM. Preparation of geopolymer inorganic membrane and purification of pulp paper making green liquor. Appl Clay Sci. 2019;168:269–75.

    Article  CAS  Google Scholar 

  14. Pacheco-Torgal F, Moura D, Ding Y, Jalali S. Composition, strength and workability of alkali-activated metakaolin based mortars. Constr Build Mater. 2011;25(9):3732–45.

    Article  Google Scholar 

  15. Wang J, Xl Wu, Wang JX, Liu CZ, Lai YM, Hong ZK, Zheng JP. Hydrothermal synthesis and characterization of alkali-activated slag–fly ash–metakaolin cementitious materials. Microporous Mesoporous Mater. 2012;155:186–91.

    Article  CAS  Google Scholar 

  16. Rashad AM. Alkali-activated metakaolin: a short guide for civil engineer—an overview. Constr Build Mater. 2013;41:751–65.

    Article  Google Scholar 

  17. Kong DLY, Sanjayan JG, Sagoe-Crentsil K. Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures. Cem Concr Res. 2007;37(12):1583–9.

    Article  CAS  Google Scholar 

  18. Palomo A, Grutzeck MW, Blanco MT. Alkali-activated fly ashes: a cement for the future. Cem Concr Res. 1999;29(8):1323–9.

    Article  CAS  Google Scholar 

  19. Duxson P, Fernández-Jiménez A, Provis JL, Lukey GC, Palomo A, Van Deventer JSJ. Geopolymer technology: the current state of the art. J Mater Sci. 2007;42(9):2917–33.

    Article  CAS  Google Scholar 

  20. Davidovits, J. Synthesis of new high temperature geo-polymers for reinforced plastics/composites. In: SPE PACTEC’79. Society of Plastic Engineers, Brookfield Center, USA; 1979.

  21. Davidovits J. Geopolymers—inorganic polymeric new materials. J Therm Anal Calorim. 1991;37(8):1633–56.

    Article  CAS  Google Scholar 

  22. Chindaprasirt P, Jaturapitakkul C, Chalee W, Rattanasak U. Comparative study on the characteristics of fly ash and bottom ash geopolymers. Waste Manag. 2009;29(2):539–43.

    Article  CAS  Google Scholar 

  23. Chindaprasirt P, Chareerat T, Sirivivatnanon V. Workability and strength of coarse high calcium fly ash geopolymer. Cem Concr Compos. 2007;29(3):224–9.

    Article  CAS  Google Scholar 

  24. Škvára F, Kopecký L, Šmilauer V, Bittnar Z. Material and structural characterization of alkali activated low-calcium brown coal fly ash. J Hazard Mater. 2009;168(2–3):711–20.

    Article  Google Scholar 

  25. Wianglor S, Sinthupinyo S, Piyaworapaiboon M, Chaipanich A. Effect of alkali-activated metakaolin cement on compressive strength of mortars. Appl Clay Sci. 2017;141:272–9.

    Article  CAS  Google Scholar 

  26. Pelisser F, Guerrino EL, Menger M, Michel MD. Micromechanical characterization of metakaolin-based geopolymers. Const Build Mater. 2013;49:547–53.

    Article  Google Scholar 

  27. Sathonsaowaphak A, Chindaprasirt P, Pimaraksa K. Workability and strength of lignite bottom ash geopolymer mortar. J Hazard Mater. 2009;168:44–50.

    Article  CAS  Google Scholar 

  28. Pangdaeng S, Phoo-ngernkham T, Sata V, Chindaprasirt P. Influence of curing conditions on properties of high calcium fly ash geopolymer containing portland cement as additive. Mater Des. 2014;53:269–74.

    Article  CAS  Google Scholar 

  29. García-Lodeiro I, Fernández-Jiménez A, Palomo A. Variation in hybrid cements over time. Alkaline activation of fly ash-portland cement blends. Cem Concr Res. 2013;52:112–22.

    Article  Google Scholar 

  30. Kuzielová E, Žemlička M, Novotný R, Palou M. Simultaneous effect of silica fume, metakaolin and ground granulated blast-furnace slag on the hydration of multicomponent cementitious binders. J Therm Anal Calorim. 2019;136:1527–37.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Thailand Research Fund (TRF) for the Research Scholar Award given to Associate Professor Dr. Arnon Chaipanich. The authors are also grateful for Master Research Grant, Research and Researcher for Industry (RRI), given to Miss Kornnika Wianglor under support from the Thailand Research Fund (TRF) and the Research and Innovation Center, SCG Cement Co., Ltd. This research work was also partially supported by Chiang Mai University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnon Chaipanich.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaipanich, A., Wianglor, K., Piyaworapaiboon, M. et al. Thermogravimetric analysis and microstructure of alkali-activated metakaolin cement pastes. J Therm Anal Calorim 138, 1965–1970 (2019). https://doi.org/10.1007/s10973-019-08592-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08592-z

Keywords

Navigation