Skip to main content
Log in

Thermal decomposition of carbonated lanthanum hydroxide

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The aim of this study was to research the influence of carbonate species on the thermal decomposition of lanthanum oxide compounds. To obtain adequate carbonate fractions, pure lanthanum hydroxide and oxide, respectively, were stored in a humid carbon dioxide atmosphere. In the process, lanthanum oxide converts within 24 h to lanthanum hydroxide because of its high affinity to water. Furthermore lanthanum hydroxide has the tendency to form carbonates, due to their basic character. By means of the results of TG-FTIR and TEM, a simplified model could be derived; the thermal decomposition of carbonated lanthanum hydroxide consists of two interfering reactions: The first reaction is the thermal decomposition of lanthanum hydroxide, and the second reaction is the thermal decomposition of lanthanum hydroxide carbonate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhu J, Gui Z, Ding Y. A simple route to lanthanum hydroxide nanorods. Mater Lett. 2008;62:2373–6.

    Article  CAS  Google Scholar 

  2. Ozawa M, Onoe R, Kato H. Formation and decomposition of some rare earth (RE = La, Ce, Pr) hydroxides and oxides by homogeneous precipitation. J Alloys Compd. 2006;408–412:556–9.

    Article  Google Scholar 

  3. Vadivel Murugan A, Navale SC, Ravi V. Synthesis of nanocrystalline La2O3 powder at 100°C. Mater Lett. 2006;60:848–9.

    Article  CAS  Google Scholar 

  4. Fleming P, Farrel RA, Holmes JD, Morris MA. The rapid formation of La(OH)3 from La2O3 powders on exposure to water vapor. J Am Ceram Soc. 2010;93:1187–94.

    Article  CAS  Google Scholar 

  5. Mazloumi M, Zanganeh S, Kajbafvala A, Shayegh ME, Sadrnezhaad SK. Formation of lanthanum hydroxide nanostructures: effect of NaOH and KOH solvent. Int J Eng Trans B. 2008;21:169–76.

    Google Scholar 

  6. Wang X, Li Y. Synthesis and characterization of lanthanide hydroxide single crystal nanowires. Angew Chem Int Ed. 2002;41:4790–3.

    Article  CAS  Google Scholar 

  7. Kim SJ, Han WK, Kang SG, Han MS, Cheong YH. Formation of lanthanum hydroxide and oxide via precipitation. Solid State Phenom. 2008;135:23–6.

    Article  CAS  Google Scholar 

  8. Füglein E, Walter D. Thermal analysis of lanthanum hydroxide. J Therm Anal Calorim. 2012;110:199–202.

    Article  Google Scholar 

  9. Zhang X, He C, Wang L, Liu J, Deng M, Deng Q. Non-isothermal kinetic analysis of thermal dehydration of La2(CO3)3·3.4H2O in air. Trans Nonferrous Met Soc China. 2014;24:3378–85.

    Article  CAS  Google Scholar 

  10. Foger K, Hoang M, Turney TW. Formation and thermal decomposition of rare-earth carbonates. J Mater Sci. 1992;27:77–82.

    Article  CAS  Google Scholar 

  11. Imanaka N, Masui T, Kato Y. Preparation of the cubic-type La2O3 phase by thermal decomposition of LaI3. J Solid State Chem. 2005;178:395–8.

    Article  CAS  Google Scholar 

  12. Lin CH, Campbell D, Wang JX, Lunsford H. Oxidative dimerization of methane over lanthanum oxide. J Phys Chem. 1986;90:534–7.

    Article  CAS  Google Scholar 

  13. Campbell KD, Zhang H, Lunsford JH. Methane activation by the lanthanide oxides. J Phys Chem. 1988;92:750–3.

    Article  CAS  Google Scholar 

  14. Bernal S, Martin GA, Moral O, Perricho V. Oxidative dehydrogenation of ethane over lanthana: actual nature of the active phase. Catal Lett. 1990;6:231–8.

    Article  CAS  Google Scholar 

  15. Haensch A, Borowski D, Barsan N, Koziej D, Niederberger M, Weimer U. Faster response times of rare-earth oxycarbonate based CO2 sensors and another readout strategy for real-world applications. Proc Eng. 2011;25:1429–32.

    Article  CAS  Google Scholar 

  16. Koyabu K, Masui T, Tamura S, Imanaka N. Synthesis o a new phosphor based on rare earth oxycarbonate. J Alloys Compd. 2006;408–412:867–70.

    Article  Google Scholar 

  17. Wang S, Wang W, Qian Y. Preparation of La2O3 thin films by pulse ultrasonic spray pyrolysis method. Thin Solid Films. 2000;372:50–3.

    Article  CAS  Google Scholar 

  18. Bernal S, Botana FJ, García R, Ramírez F, Rodríguez-Izquierdo JM. Solid state chemistry of the preparation of lanthana-supported metal catalysts—study of the impregnation step. J Mater Sci. 1987;22:3793–800.

    Article  CAS  Google Scholar 

  19. Bernal S, Blanco G, Calvino JJ, Pérez Omil JA, Pintado JM. Some major aspects of the chemical behaviour of rare earth oxides: an overview. J Alloys Compd. 2006;408–412:496–502.

    Article  Google Scholar 

  20. Haibel E, Berendts S, Walter D. Thermogravimetric and X-ray diffraction investigation on carbonated lanthanum oxide and lanthanum hydroxide formed in humid CO2. J Therm Anal Calorim. 2018;134:261–7.

    Article  CAS  Google Scholar 

  21. Neumann A, Walter D. The thermal transformation from lanthanum hydroxide to lanthanum hydroxide oxide. Thermocim Acta. 2006;445:200–4.

    Article  CAS  Google Scholar 

  22. Alvero R, Odriozola JA, Trillo JM, Bernal S. Lanthanide oxides: preparation and aiging. J Chem Soc, Dalton Trans. 1984. https://doi.org/10.1039/dt9840000087.

    Article  Google Scholar 

  23. Walter D, Buxbaum G, Laqua W. The mechanism of the thermal transformation from goethite to hematite. J Therm Anal Calorim. 2001;63:733–48.

    Article  CAS  Google Scholar 

  24. Bernal S, Díaz JA, García R, Rodríguez-Izquierdo JM. Study of some aspects of the reactivity of La2O3 with CO2 and H2O. J Mat Sci. 1985;20:537–41.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Walter.

Additional information

Dedicated to Professor Heiko Cammenga on the occasion of his 80th birthday.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haibel, E., Füglein, E., Schulze, A.S. et al. Thermal decomposition of carbonated lanthanum hydroxide. J Therm Anal Calorim 138, 3571–3575 (2019). https://doi.org/10.1007/s10973-019-08461-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08461-9

Keywords

Navigation