Skip to main content
Log in

Study of the risks of the graphene oxide preparation process by reaction calorimetry

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The improved Hummers method uses graphite powder as the raw material to produce graphene oxide, whose preparation releases a large amount of heat. This heat release increases the risks associated with the process as it contributes to combustion and explosion accidents. Based on reaction calorimetry, differential scanning calorimetry, scanning electron microscopy, and energy-dispersive spectrometry, the mechanisms underlying such heat release and related hazards are discussed. According to the conditions influencing the heat release, an orthogonal experimental design was applied to quantify the amount of heat released and the oxidation degree during the preparation process. The optimum working conditions were determined in terms of the stirring speed (250 rpm), feeding time (60 min), feeding temperature (0 °C), and temperature of the intermediate-temperature stage (20 °C). These conditions effectively reduce the risks of the overall manufacturing process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev AS, et al. Correction to improved synthesis of graphene oxide. ACS Nano. 2018;12(2):325–56.

    Article  Google Scholar 

  2. Xiang Q, Yu J, Jaroniec M. Graphene-based semiconductor photocatalysts. Chem Soc Rev. 2012;41(2):782–96.

    Article  CAS  PubMed  Google Scholar 

  3. Cooper DR, D’Anjou B, Ghattamaneni N, Harack B, Hilke M, Horth A, et al. Experimental review of graphene. ISRN Condens Matter Phys. 2012;2012(1):31–8.

    Google Scholar 

  4. Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GH, Evmenenko G, et al. Preparation and characterization of graphene oxide paper. Nature. 2007;448(7152):457–60.

    Article  CAS  PubMed  Google Scholar 

  5. Zhang X, Weeks BL. Improved thermal stability and reduced sublimation rate of pentaerythritol tetranitrate through doping graphene oxide. J Therm Anal Calorim. 2015;122(3):1061–7.

    Article  CAS  Google Scholar 

  6. Liu X, Wu W, Qi Y, Qu H, Xu J. Synthesis of a hybrid zinc hydroxystannate/reduction graphene oxide as a flame retardant and smoke suppressant of epoxy resin. J Therm Anal Calorim. 2016;126(2):1–7.

    CAS  Google Scholar 

  7. Brodie BC. On the Atomic Weight of Graphite. Philos Trans R Soc Lond. 2009;149(1):249–59.

    Google Scholar 

  8. Hummers WS, Offeman RE. Preparation of graphitic oxide. J Am Chem Soc. 1958;80(6):1339.

    Article  CAS  Google Scholar 

  9. Casabianca LB, Shaibat MA, Cai WW, Park S, Piner R, Ruoff RS, et al. NMR-based structural modeling of graphite oxide using multidimensional 13C solid-state NMR and ab initio chemical shift calculations. J Am Chem Soc. 2010;132(16):5672–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Figueiredo JL, Pereira MFR, Freitas MMA, Órfão JJM. Modification of the surface chemistry of activated carbons. Carbon. 1999;37(9):1379–89.

    Article  CAS  Google Scholar 

  11. Yen YC, Jain A, Altan T. A finite element analysis of orthogonal machining using different tool edge geometries. J Mater Process Technol. 2004;146(1):72–81.

    Article  CAS  Google Scholar 

  12. Eigler S, Dotzer C, Hof F, Bauer W, Hirsch A. Sulfur species in graphene oxide. Chemistry. 2013;19(29):9490–6.

    Article  CAS  PubMed  Google Scholar 

  13. Krishnamoorthy K, Mohan R, Kim SJ. Graphene oxide as a photocatalytic material. Appl Phys Lett. 2011;98(24):032107.

    Article  Google Scholar 

  14. Zhang ZB, Wu JJ, Su Y, Zhou J, Gao Y, Yu HY, et al. Layer-by-layer assembly of graphene oxide on polypropylene macroporous membranes via click chemistry to improve antibacterial and antifouling performance. Appl Surf Sci. 2015;332(1):300–7.

    Article  CAS  Google Scholar 

  15. Stobinski L, Lesiak B, Malolepszy A, Mazurkiewicz M, Mierzwa B, Zemek J, et al. Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. J Electron Spectrosc Relat Phenom. 2014;195(15):145–54.

    Article  CAS  Google Scholar 

  16. Ju H, Li H, Qin W, Yun Z, Jiao Q. Synthesis of TiO2 nanowire/reduced graphene oxide nanocomposites and their photocatalytic performances. Chem Eng J. 2015;263:144–50.

    Article  Google Scholar 

  17. Chen J, Li Y, Huang L, Li C, Shi G. High-yield preparation of graphene oxide from small graphite flakes via an improved Hummers method with a simple purification process. Carbon. 2015;81(1):826–34.

    Article  CAS  Google Scholar 

  18. Wu T, Wang X, Qiu H, Gao J, Wang W, Liu Y. Graphene oxide reduced and modified by soft nanoparticles and its catalysis of the Knoevenagel condensation. J Mater Chem. 2012;22(11):4772–9.

    Article  CAS  Google Scholar 

  19. Allahbakhsh A, Haghighi AH, Sheydaei M. Poly(ethylene trisulfide)/graphene oxide nanocomposites. J Therm Anal Calorim. 2017;128(1):427–42.

    Article  CAS  Google Scholar 

  20. Zhou Y, Feng P, Li P, Hu H, Shuai C. An optimization scheme of single-spacer nozzle of aluminum roll casting using coupled fluid-thermal finite element analysis. Berlin: Springer; 2011.

    Book  Google Scholar 

  21. Zeng SY, Kang LS, Ding LX. An orthogonal multi-objective evolutionary algorithm for multi-objective optimization problems with constraints. Evol Comput. 2004;12(1):77–98.

    Article  PubMed  Google Scholar 

  22. Gao S, Zeng S, Xiao B, Zhang L, Shi Y, Tian X et al., editors. An orthogonal multi-objective evolutionary algorithm with lower-dimensional crossover. In: Eleventh conference on congress on evolutionary computation; 2009.

  23. Jiang S, Cai Z, editors. Faster convergence and higher hypervolume for multi-objective evolutionary algorithms by orthogonal and uniform design. In: International symposium on intelligence computation and applications; 2010.

  24. Torréns-Martín D, Fernández-Carrasco L, Blanco-Varela MT. Conduction calorimetric studies of ternary binders based on Portland cement, calcium aluminate cement and calcium sulphate. J Therm Anal Calorim. 2013;114(2):799–807.

    Article  Google Scholar 

Download references

Acknowledgements

Thanks to Qingdao Qingke Insafe Science and Technology Co., Ltd. for funding. Funding was provided by The National Key Research and Development Program of China (Grant No. 2017YFC0804801-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanxin Xie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Xie, C., Su, L. et al. Study of the risks of the graphene oxide preparation process by reaction calorimetry. J Therm Anal Calorim 139, 101–112 (2020). https://doi.org/10.1007/s10973-019-08364-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08364-9

Keywords

Navigation