Skip to main content
Log in

Thermophysical study of graphene nanoflakes by differential scanning calorimetry

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Combustion heats of graphene nanoflakes (GNFs) of different thicknesses produced by chemical vapor deposition method were measured for the first time by differential scanning calorimetry (DSC) in the temperature range of 303–1273 K. They were found to be lower than that of graphite and increase nonlinearly from 18.8 ± 1.1 to 30.5 ± 1.4 kJ g−1 with decrease in the specific surface area of GNFs from 1730 to 770 m2 g−1. The heat capacity of GNFs was calculated to be higher than that of graphite. The energy diagram for the heat of GNF combustion was proposed based on the literature data and results of DSC, Raman spectroscopy and transmission electron microscopy study. The obtained results expand the scarce thermodynamic data available for graphene-based materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Frackowiak E, Abbas Q, Béguin F. Carbon/carbon supercapacitors. J Energy Chem. 2013;22:226–40.

    Article  CAS  Google Scholar 

  2. Sheng Z-H, Gao H-L, Bao W-J, Wang F-B, Xia X-H. Synthesis of boron doped graphene for oxygen reduction reaction in fuel cells. J Mater Chem. 2012;22:390–5.

    Article  CAS  Google Scholar 

  3. Chernyak SA, Suslova EV, Ivanov AS, Egorov AV, Maslakov KI, Savilov SV, et al. Co catalysts supported on oxidized CNTs: evolution of structure during preparation, reduction and catalytic test in Fischer–Tropsch synthesis. Appl Catal A Gen. 2016;523:221–9.

    Article  CAS  Google Scholar 

  4. Chernyak SA, Stolbov DN, Ivanov AS, Klokov SV, Egorova TB, Maslakov KI, et al. Effect of type and localization of nitrogen in graphene nanoflake support on structure and catalytic performance of co-based Fischer–Tropsch catalysts. Catal Today 2019; Available from: https://doi.org/10.1016/j.cattod.2019.02.044.

  5. Chen Y, Li Y, Sun D, Tian D, Zhang J, Zhu J-J. Fabrication of gold nanoparticles on bilayer graphene for glucose electrochemical biosensing. J Mater Chem. 2011;21:7604.

    Article  CAS  Google Scholar 

  6. Cherkasov NB, Savilov SV, Ivanov AS, Lunin VV. Bomb calorimetry as a bulk characterization tool for carbon nanostructures. Carbon N Y. 2013;63:324–9. https://doi.org/10.1016/j.carbon.2013.06.085.

    Article  CAS  Google Scholar 

  7. Likodimos V, Steriotis TA, Papageorgiou SK, Romanos GE, Marques RRN, Rocha RP, et al. Controlled surface functionalization of multiwall carbon nanotubes by HNO3 hydrothermal oxidation. Carbon N Y. 2014;69:311–26.

    Article  CAS  Google Scholar 

  8. Van Dommele S, Romero-izquirdo A, Brydson R, De Jong KP, Bitter JH. Tuning nitrogen functionalities in catalytically grown nitrogen-containing carbon nanotubes. Carbon N Y. 2008;46(13):8–148.

    Google Scholar 

  9. Chizari K, Vena A, Laurentius L, Sundararaj U. (2014) The effect of temperature on the morphology and chemical surface properties of nitrogen-doped carbon nanotubes. Carbon N Y. 2014;68:369–79. https://doi.org/10.1016/j.carbon.2013.11.013.

    Article  CAS  Google Scholar 

  10. Kabo GJ, Paulechka E, Blokhin AV, Voitkevich OV, Liavitskaya T, Kabo AG. Thermodynamic properties and similarity of stacked-cup multiwall carbon nanotubes and graphite. J Chem Eng Data. 2016;61:3849–57. https://doi.org/10.1021/acs.jced.6b00525.

    Article  CAS  Google Scholar 

  11. Mentado-Morales J, Mendoza-Pérez G, De Los Santos-Acosta ÁE, Peralta-Reyes E, Regalado-Méndez A. Energies of combustion and enthalpies of formation of carbon nanotubes. J Therm Anal Calorim. 2018;131:2763–8.

    Article  CAS  Google Scholar 

  12. Levchenko AA, Kolesnikov AI, Trofymluk O, Navrotsky A. Energetics of single-wall carbon nanotubes as revealed by calorimetry and neutron scattering. Carbon N Y. 2011;49:949–54. https://doi.org/10.1016/j.carbon.2010.11.004.

    Article  CAS  Google Scholar 

  13. Jessup R. Heats of combustion of diamond and of graphite. J Res Natl Bur Stand. 1938;21:475–90.

    Article  CAS  Google Scholar 

  14. Cherkasov NB, Savilov SV, Ivanov AS, Lunin VV. Bomb calorimetry as a bulk characterization tool for carbon nanostructures. Carbon N Y. 2013;63:324–9.

    Article  CAS  Google Scholar 

  15. Suslova EV, Savilov SV, Ni J, Lunin VV, Aldoshin SM. The enthalpies of formation of carbon nanomaterials as a key factor for understanding their structural features. Phys Chem Chem Phys. 2017;19:2269–75.

    Article  CAS  Google Scholar 

  16. Xu F, Sun LX, Zhang J, Qi YN, Yang LN, Ru HY, et al. Thermal stability of carbon nanotubes. J Therm Anal Calorim. 2010;102:785–91.

    Article  CAS  Google Scholar 

  17. Ratkovic S, Peica N, Thomsen C, Bukur DB, Boskovic G. Thermal stability evolution of carbon nanotubes caused by liquid oxidation. J Therm Anal Calorim. 2014;115:1477–86.

    Article  CAS  Google Scholar 

  18. Chernyak SA, Podgornova AM, Arkhipova EA, Novotortsev RO, Egorova TB, Ivanov AS, et al. Jellyfish-like few-layer graphene nanoflakes: synthesis, oxidation, and hydrothermal N-doping. Appl Surf Sci. 2018;439:371–3. https://doi.org/10.1016/j.apsusc.2018.01.059.

    Article  CAS  Google Scholar 

  19. Thirumal V, Pandurangan A, Jayavel R, Ilangovan R. Synthesis and characterization of boron doped graphene nanosheets for supercapacitor applications. Synth Met. 2016;220:524–32. https://doi.org/10.1016/j.synthmet.2016.07.011.

    Article  CAS  Google Scholar 

  20. Jawhari T, Roid A, Casado J. Raman spectroscopic characterization of some commercially available carbon black materials. Carbon N Y. 1995;33:1561–5.

    Article  CAS  Google Scholar 

  21. Perazzolo V, Durante C, Pilot R, Paduano A, Zheng J, Rizzi GA, et al. Nitrogen and sulfur doped mesoporous carbon as metal-free electrocatalysts for the in situ production of hydrogen peroxide. Carbon N Y. 2015;95:949–63.

    Article  CAS  Google Scholar 

  22. Arkhipova EA, Ivanov AS, Strokova NE, Chernyak SA, Shumyantsev AV, Maslakov KI, et al. Structural evolution of nitrogen-doped carbon nanotubes: from synthesis and oxidation to thermal defunctionalization. Carbon N Y. 2017;125:20–31.

    Article  CAS  Google Scholar 

  23. Ferrari AC, Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B. 2000;61:95–107.

    Article  Google Scholar 

  24. Chernyak SA, Ivanov AS, Maslakov KI, Egorov AV, Shen Z, Savilov SS, et al. Oxidation, defunctionalization and catalyst life cycle of carbon nanotubes: a Raman spectroscopy view. Phys Chem Chem Phys. 2017;19:2276–85. https://doi.org/10.1039/C6CP04657F.

    Article  CAS  PubMed  Google Scholar 

  25. Hussain S, Amade R, Jover E, Bertran E. Nitrogen plasma functionalization of carbon nanotubes for supercapacitor applications. J Mater Sci. 2013;48:7620–8.

    Article  CAS  Google Scholar 

  26. Beyssac O, Goffé B, Petitet JP, Froigneux E, Moreau M, Rouzaud JN. On the characterization of disordered and heterogeneous carbonaceous materials by Raman spectroscopy. Spectrochim Acta Part A Mol Biomol Spectrosc. 2003;59:2267–76.

    Article  Google Scholar 

  27. Maldonado S, Morin S, Stevenson KJ. Structure, composition, and chemical reactivity of carbon nanotubes by selective nitrogen doping. Carbon N Y. 2006;44:1429–37.

    Article  CAS  Google Scholar 

  28. Herdman JD, Connelly BC, Smooke MD, Long MB, Miller JH. A comparison of Raman signatures and laser-induced incandescence with direct numerical simulation of soot growth in non-premixed ethylene/air flames. Carbon N Y. 2011;49:5298–311. https://doi.org/10.1016/j.carbon.2011.07.050.

    Article  CAS  Google Scholar 

  29. Kaiho M, Kodera Y, Yamada O. Estimation of heats of formation and combustion of coal. Fuel. 2019;237:536–44. https://doi.org/10.1016/j.fuel.2018.09.022.

    Article  CAS  Google Scholar 

  30. Chase MW. NIST-JANAF themochemical tables. 4th ed. New York: American Institute of Physics; 1988.

    Google Scholar 

  31. Pop E, Varshney V, Roy AK. Thermal properties of graphene: fundamentals and applications. MRS Bull. 2012;37:1273–81.

    Article  CAS  Google Scholar 

  32. DeSorbo W, Tyler WW. The specific heat of graphite from 13° to 300°K. J Chem Phys. 1953;21:1660–3. https://doi.org/10.1063/1.1698640.

    Article  CAS  Google Scholar 

  33. Nika DL, Askerov AS, Balandin AA. Anomalous size dependence of the thermal conductivity of graphene ribbons. Nano Lett. 2012;12:3238–44. https://doi.org/10.1021/nl301230g.

    Article  CAS  PubMed  Google Scholar 

  34. Wei Z, Yang J, Chen W, Bi K, Li D, Chen Y. Phonon mean free path of graphite along the c -axis. Appl Phys Lett. 2014;104:081903. https://doi.org/10.1063/1.4866416.

    Article  CAS  Google Scholar 

  35. Wohner N, Lam P, Sattler K. Energetic stability of graphene nanoflakes and nanocones. Carbon N Y. 2014;67:721–35. https://doi.org/10.1016/j.carbon.2013.10.064.

    Article  CAS  Google Scholar 

  36. Hawtin P, Lewis JB, Moul N, Phillips RH. The heats of combustion of graphite, diamond and some non-graphitic carbons. Philos Trans R Soc A Math Phys Eng Sci. 1966;261:67–95. https://doi.org/10.1098/rsta.1966.0058.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The reported study was funded by RFBR according to the research project #18-33-00322-mol_a. The authors acknowledge support from “Nanochemistry and Nanomaterials” MSU Equipment Center, Lomonosov Moscow State University Program of Development. S. Savilov and V. Lunin also thank the State Assignment of IGIC RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekaterina A. Arkhipova.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2043 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arkhipova, E.A., Strokova, N.E., Tambovtseva, Y.A. et al. Thermophysical study of graphene nanoflakes by differential scanning calorimetry. J Therm Anal Calorim 140, 2641–2648 (2020). https://doi.org/10.1007/s10973-019-09040-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-09040-8

Keywords

Navigation