Skip to main content
Log in

Isothermal combustion characteristics of anthracite and spent coffee grounds briquettes

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The isothermal combustion characteristics of anthracite and spent coffee grounds briquettes in a bench-scale fixed-bed furnace were examined by using a macro-thermogravimetric analysis approach between 873 and 1173 K. The combustion performances in terms of the conversion rates, flame evolution, pollutant emissions, ash compositions and ash fusion temperatures of two anthracite/spent coffee grounds blend briquettes with blending ratios of 40% and 60% were also compared with those of their individuals. There was only an obvious peak in DTG profile for every sample at each temperature. At 973 K, the average burning rate of the spent coffee grounds was about 8 times higher than that of the anthracite. The average burning rate of 60% anthracite/40% spent coffee grounds blend at 1173 K increased by about 3 times in comparison with that at 873 K. NO2 emissions for the four samples were much less than other gaseous emissions. The four ash fusion temperatures for the anthracite were higher than 1791 K. The deformation temperature, softening temperature, hemispherical temperature and flow temperature for the spent coffee grounds were 1526, 1626, 1687 and 1791 K. The ash fusion characteristics of the spent coffee grounds were improved by blending the anthracite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

α :

Conversion degree

L :

Thickness (mm)

m :

Mass

T :

Temperature (K °C−1)

b:

Burnout

max:

Maximum

m:

Mean

References

  1. Tsai W-T, Liu S-C, Hsieh C-H. Preparation and fuel properties of biochars from the pyrolysis of exhausted coffee residue. J Anal Appl Pyrol. 2012;93:63–7. https://doi.org/10.1016/j.jaap.2011.09.010.

    Article  CAS  Google Scholar 

  2. Qi J, Li H, Han K, Zuo Q, Gao J, Wang Q, et al. Influence of ammonium dihydrogen phosphate on potassium retention and ash melting characteristics during combustion of biomass. Energy. 2016;102:244–51. https://doi.org/10.1016/j.energy.2016.02.090.

    Article  CAS  Google Scholar 

  3. Ahn S, Choi G, Kim D. The effect of wood biomass blending with pulverized coal on combustion characteristics under oxy-fuel condition. Biomass Bioenerg. 2014;71:144–54. https://doi.org/10.1016/j.biombioe.2014.10.014.

    Article  CAS  Google Scholar 

  4. Chen M, Yu D, Wei Y. Evaluation on ash fusion behavior of eucalyptus bark/lignite blends. Powder Technol. 2015;286:39–47. https://doi.org/10.1016/j.powtec.2015.07.043.

    Article  CAS  Google Scholar 

  5. Jing N, Zhu M, Shen G, Wang Q, Zhang D. Effect of ash preparation method on the sintering characteristics of ashes from combustion of coal and biomass blends. Fuel. 2016;186:830–7. https://doi.org/10.1016/j.fuel.2016.09.041.

    Article  CAS  Google Scholar 

  6. Kupka T, Mancini M, Irmer M, Weber R. Investigation of ash deposit formation during co-firing of coal with sewage sludge, saw-dust and refuse derived fuel. Fuel. 2008;87(12):2824–37. https://doi.org/10.1016/j.fuel.2008.01.024.

    Article  CAS  Google Scholar 

  7. Mussatto S, Machado ES, Martins S, Teixeira J. Production, composition, and application of coffee and its industrial residues. Food Bioprocess Technol. 2011;4(5):661–72. https://doi.org/10.1007/s11947-011-0565-z.

    Article  CAS  Google Scholar 

  8. Murthy PS, Madhava Naidu M. Sustainable management of coffee industry by-products and value addition—a review. Resour Conserv Recycl. 2012;66:45–58. https://doi.org/10.1016/j.resconrec.2012.06.005.

    Article  Google Scholar 

  9. Wei Y, Chen M, Niu S, Xue F. Experimental investigation on the oxy-fuel co-combustion behavior of anthracite coal and spent coffee grounds. J Therm Anal Calorim. 2016;124(3):1651–60. https://doi.org/10.1007/s10973-016-5269-1.

    Article  CAS  Google Scholar 

  10. Li XG, Lv Y, Ma BG, Jian SW, Tan HB. Thermogravimetric investigation on co-combustion characteristics of tobacco residue and high-ash anthracite coal. Bioresour Technol. 2011;102(20):9783–7. https://doi.org/10.1016/j.biortech.2011.07.117.

    Article  CAS  PubMed  Google Scholar 

  11. Ouyang Z, Zhu J, Lu Q. Experimental study on preheating and combustion characteristics of pulverized anthracite coal. Fuel. 2013;113:122–7. https://doi.org/10.1016/j.fuel.2013.05.063.

    Article  CAS  Google Scholar 

  12. Stephenson PL. Mathematical modelling of semi-anthracite combustion in a single burner furnace. Fuel. 2003;82(15–17):2069–73. https://doi.org/10.1016/S0016-2361(03)00158-3.

    Article  CAS  Google Scholar 

  13. Roy MM, Corscadden KW. An experimental study of combustion and emissions of biomass briquettes in a domestic wood stove. Appl Energy. 2012;99:206–12. https://doi.org/10.1016/j.apenergy.2012.05.003.

    Article  CAS  Google Scholar 

  14. Chen NN, Chen MQ, Fu BA, Song JJ. Far-infrared irradiation drying behavior of typical biomass briquettes. Energy. 2017;121:726–38. https://doi.org/10.1016/j.energy.2017.01.054.

    Article  Google Scholar 

  15. Karim MR, Naser J. Numerical modelling of solid biomass combustion: difficulties in initiating the fixed bed combustion. Energy Procedia. 2017;110:390–5. https://doi.org/10.1016/j.egypro.2017.03.158.

    Article  Google Scholar 

  16. Zhou H, Jensen AD, Glarborg P, Jensen PA, Kavaliauskas A. Numerical modeling of straw combustion in a fixed bed. Fuel. 2005;84(4):389–403. https://doi.org/10.1016/j.fuel.2004.09.020.

    Article  CAS  Google Scholar 

  17. Zhou H, Jensen AD, Glarborg P, Kavaliauskas A. Formation and reduction of nitric oxide in fixed-bed combustion of straw. Fuel. 2006;85(5–6):705–16. https://doi.org/10.1016/j.fuel.2005.08.038.

    Article  CAS  Google Scholar 

  18. Mitchell EJS, Lea-Langton AR, Jones JM, Williams A, Layden P, Johnson R. The impact of fuel properties on the emissions from the combustion of biomass and other solid fuels in a fixed bed domestic stove. Fuel Process Technol. 2016;142:115–23. https://doi.org/10.1016/j.fuproc.2015.09.031.

    Article  CAS  Google Scholar 

  19. Zhang S, Xiao R, Zheng W. Comparative study between fluidized-bed and fixed-bed operation modes in pressurized chemical looping combustion of coal. Appl Energy. 2014;130:181–9. https://doi.org/10.1016/j.apenergy.2014.05.049.

    Article  CAS  Google Scholar 

  20. Jones JM, Ross AB, Mitchell EJS, Lea-Langton AR, Williams A, Bartle KD. Organic carbon emissions from the co-firing of coal and wood in a fixed bed combustor. Fuel. 2017;195:226–31. https://doi.org/10.1016/j.fuel.2017.01.061.

    Article  CAS  Google Scholar 

  21. Liang L, Sun R, Fei J, Wu S, Liu X, Dai K, et al. Experimental study on effects of moisture content on combustion characteristics of simulated municipal solid wastes in a fixed bed. Bioresour Technol. 2008;99(15):7238–46. https://doi.org/10.1016/j.biortech.2007.12.061.

    Article  CAS  PubMed  Google Scholar 

  22. Duffy NTM, Eaton JA. Investigation of factors affecting channelling in fixed-bed solid fuel combustion using CFD. Combust Flame. 2013;160(10):2204–20. https://doi.org/10.1016/j.combustflame.2013.04.015.

    Article  CAS  Google Scholar 

  23. Yang YB, Ryu C, Goodfellow J, Sharifi VN, Swithenbank J. Modelling waste combustion in grate furnaces. Process Saf Environ Prot. 2004;82(3):208–22. https://doi.org/10.1205/095758204323065975.

    Article  CAS  Google Scholar 

  24. Mayoral MC, Izquierdo MT, Andrés JM, Rubio B. Different approaches to proximate analysis by thermogravimetry analysis. Thermochim Acta. 2001;370(1):91–7. https://doi.org/10.1016/S0040-6031(00)00789-9.

    Article  CAS  Google Scholar 

  25. Huang YW, Chen MQ, Luo HF. Nonisothermal torrefaction kinetics of sewage sludge using the simplified distributed activation energy model. Chem Eng J. 2016;298:154–61. https://doi.org/10.1016/j.cej.2016.04.018.

    Article  CAS  Google Scholar 

  26. Fornasini P. The uncertainty in physical measurements: an introduction to data analysis in the physics laboratory. Berlin: Springer; 2010.

    Google Scholar 

  27. Ding X, Fang F, Du T, Zheng K, Chen L, Tian X, et al. Carbon nanotube-filled intumescent multilayer nanocoating on cotton fabric for enhancing flame retardant property. Surf Coat Technol. 2016;305:184–91. https://doi.org/10.1016/j.surfcoat.2016.08.035.

    Article  CAS  Google Scholar 

  28. Kijo-Kleczkowska A, Środa K, Kosowska-Golachowska M, Musiał T, Wolski K. Combustion of pelleted sewage sludge with reference to coal and biomass. Fuel. 2016;170:141–60. https://doi.org/10.1016/j.fuel.2015.12.026.

    Article  CAS  Google Scholar 

  29. Jamal Y, Kim M, Park H-S. Isothermal combustion kinetics of synthetic refuse plastic fuel (RPF) blends by thermogravimetric analysis. Appl Therm Eng. 2016;104:16–23. https://doi.org/10.1016/j.applthermaleng.2016.04.151.

    Article  CAS  Google Scholar 

  30. Shao L-M, Fan S-S, Zhang H, Yao Q-S, He P-J. SO2 and NOx emissions from sludge combustion in a CO2/O2 atmosphere. Fuel. 2013;109:178–83. https://doi.org/10.1016/j.fuel.2013.01.027.

    Article  CAS  Google Scholar 

  31. Mladenović M, Paprika M, Marinković A. Denitrification techniques for biomass combustion. Renew Sustain Energy Rev. 2018;82:3350–64. https://doi.org/10.1016/j.rser.2017.10.054.

    Article  CAS  Google Scholar 

  32. Yang Z, Zhang Y, Liu L, Wang X, Zhang Z. Environmental investigation on co-combustion of sewage sludge and coal gangue: SO2, NOx and trace elements emissions. Waste Manag. 2016;50:213–21. https://doi.org/10.1016/j.wasman.2015.11.011.

    Article  CAS  PubMed  Google Scholar 

  33. Du S, Yang H, Qian K, Wang X, Chen H. Fusion and transformation properties of the inorganic components in biomass ash. Fuel. 2014;117(Part B):1281–7. https://doi.org/10.1016/j.fuel.2013.07.085.

    Article  CAS  Google Scholar 

  34. Li F, Xu M, Wang T, Fang Y, Ma M. An investigation on the fusibility characteristics of low-rank coals and biomass mixtures. Fuel. 2015;158:884–90. https://doi.org/10.1016/j.fuel.2015.06.010.

    Article  CAS  Google Scholar 

  35. Niu Y, Tan H, Wang X, Liu Z, Liu H, Liu Y, et al. Study on fusion characteristics of biomass ash. Biores Technol. 2010;101(23):9373–81. https://doi.org/10.1016/j.biortech.2010.06.144.

    Article  CAS  Google Scholar 

  36. Yu LY, Wang LW, Li PS. Study on prediction models of biomass ash softening temperature based on ash composition. J Energy Inst. 2014;87(3):215–9. https://doi.org/10.1016/j.joei.2014.03.011.

    Article  CAS  Google Scholar 

  37. Chen X, Tang J, Tian X, Wang L. Influence of biomass addition on Jincheng coal ash fusion temperatures. Fuel. 2015;160:614–20. https://doi.org/10.1016/j.fuel.2015.08.024.

    Article  CAS  Google Scholar 

  38. McLennan AR, Bryant GW, Bailey CW, Stanmore BR, Wall TF. Index for iron-based slagging for pulverized coal firing in oxidizing and reducing conditions. Energy Fuels. 2000;14(2):349–54. https://doi.org/10.1021/ef990127d.

    Article  CAS  Google Scholar 

  39. Pronobis M. Evaluation of the influence of biomass co-combustion on boiler furnace slagging by means of fusibility correlations. Biomass Bioenerg. 2005;28(4):375–83. https://doi.org/10.1016/j.biombioe.2004.11.003.

    Article  CAS  Google Scholar 

  40. Garba MU, Musa U, Azare PE, Ishaq K, Usman S, Onoduku S, Mohammad Y. Characterization and chemistry of selected nigerian coals for solid fuel combustion. Pet Coal. 2016;58(6):646–54.

    CAS  Google Scholar 

  41. Vamvuka D, Pitharoulis M, Alevizos G, Repouskou E, Pentari D. Ash effects during combustion of lignite/biomass blends in fluidized bed. Renew Energy. 2009;34(12):2662–71. https://doi.org/10.1016/j.renene.2009.05.005.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under No 51376017.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Meiqian Chen or Qinghai Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Y., Chen, M., Li, Q. et al. Isothermal combustion characteristics of anthracite and spent coffee grounds briquettes. J Therm Anal Calorim 136, 1447–1456 (2019). https://doi.org/10.1007/s10973-018-7790-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7790-x

Keywords

Navigation