Skip to main content
Log in

Numerical study of nanofluid mixed convection in a horizontal curved tube using two-phase approach

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Laminar mixed convection of nanofluid consisting of water/Al2O3 in a horizontal curved tube is investigated numerically. Three dimensional elliptical governing equations have been solved to study the simultaneous effect of the buoyancy and centrifugal forces throughout the curved tube. The effects of nanoparticle concentrations on the secondary flow and also on the contours of temperature are presented and discussed. Axial velocity profiles with respect to the horizontal and vertical diameter are shown. In addition, the effects of nanoparticle volume fractions on the axial evolution of the local peripheral average convective heat transfer coefficient and the local peripheral average skin friction coefficient are studied. It is shown that the average convective heat transfer coefficient augments with the nanoparticle concentrations. However, its effect on the average skin friction coefficient is negligible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

a:

Acceleration (m/s2)

Cf :

Peripheral average skin friction coefficient

C:

Specific heat (J/kg K)

De:

Dean number (Re(a/R)0.5)

d:

Tube diameter (m)

dp :

Nanoparticle diameter (nm)

df :

Molecular diameter of base fluid

g:

Gravitational acceleration (m s−2)

Gr:

Grashof number \( \left( { = {\frac{{\rho_{\rm eff} {\rm g}\beta_{\rm eff} q^{\prime\prime}{\rm d^{4}} }}{{{\rm K}_{\rm eff} \mu_{\rm eff}^{2} }}}} \right) \)

h:

Peripheral average convection heat transfer coefficient

K:

Thermal conductivity (W/m K)

Kb :

Boltzmann Constant (=1.3807e−23 J/K)

P:

Pressure (pa)

Pr:

Prandtl number

q ′′ :

Uniform heat flux (W m−2)

R:

Curvature radius of tube

r:

Radial direction

r0 :

Tube radial (m)

Re:

Reynolds number \( \left( {={\frac{{\rho_{\rm eff} V_{\rm m} D}}{{\mu_{\rm eff} }}}} \right) \)

Ri:

Richardson number (Gr/Re2)

T:

Temperature (K)

V:

Velocity (m s−1)

Z:

Axial direction

α:

Thermal diffusivity

β:

Volumetric expansion coefficient (K−1)

θ:

Angular coordinate

μ:

Dynamic viscosity (N s m−2)

ρ:

Density (Kg m−3)

τ:

Shear stress

ϕ:

Volume fraction

b:

Bulk

dr:

Drift

eff:

Effective

f:

Base fluid

k:

Summation index

m:

Mixture

0:

Inlet condition

p:

Particle

r:

Radial direction

w:

Wall

θ:

Angular direction

References

  1. Maxwell JC (1873) Electricity and magnetism. Clarendon press, Oxford, UK

    Google Scholar 

  2. Choi SUS (1995) Enhancing thermal conductivity of fluid with nanoparticles. Developments and applications of non-Newtonian flow, ASME, FED 231/MD 66:99–105

  3. Lee S, Choi SUS, Li S, Eastman JA (1999) Measuring thermal conductivity of fluids containing oxide nanoparticles. J Heat Transf 121:280–289

    Article  Google Scholar 

  4. Xuan YM, Li Q (2000) Heat transfer enhancement of nanofluids. Int J Heat Fluid Flow 21:58–64

    Article  Google Scholar 

  5. Xuan YM, Roetzel W (2000) Conceptions for heat transfer correlation of nanofluids. Int J Heat Mass Transf 43:3701–3707

    Article  MATH  Google Scholar 

  6. Keblinski P, Phillpot SR, Choi SUS, Eastman JA (2002) Mechanisms of heat flow in suspensions of nano-sized particles (nanofluid). Int J Heat Mass Transf 45:855–863

    Article  MATH  Google Scholar 

  7. Wang X, Xu X, Choi SUS (1999) Thermal conductivity of nanoparticle-fluid mixture. J Thermophys Heat Transf 13:474–480

    Article  Google Scholar 

  8. Choi SUS, Zhang ZG, Yu W, Lockwood FE, Grulke EA (2001) Anomalous thermal conductivity enhancement in nanotube suspensions. Appl Phys Lett 79:2252–2254

    Article  Google Scholar 

  9. Zhang X, Gu H, Fujii M (2007) Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles. Exp Thermal Fluid Sci 31:593–599

    Article  Google Scholar 

  10. Xue QZ (2003) Model for effective thermal conductivity of nanofluids. Phys Lett A 307:313–317

    Article  Google Scholar 

  11. Xuan YM, Li Q, Hu W (2003) Aggregation structure and thermal conductivity of nanofluids. AIChE J 49:1038–1043

    Article  Google Scholar 

  12. Jang SP, Choi S (2004) Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl Phys Lett 84:4316–4318

    Article  Google Scholar 

  13. Chon H, Kihm KD, Lee SP, Choi SUS (2005) Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement. Appl Phys Lett 87:1–3

    Article  Google Scholar 

  14. Sohrabi N, Masoumi N, Behzadmehr A, Sarvari SMH (2010) A simple analytical model for calculating the effective thermal conductivity of nanofluids. Heat Transf Asian Res 39:141–150

    Google Scholar 

  15. Pak BC, Cho TI (1998) Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf 11:151–170

    Article  Google Scholar 

  16. Xuan YM, Li Q (2003) Investigation on convective heat transfer and flow features of nanofluids. J Heat Transf 125:151–155

    Article  Google Scholar 

  17. Duangthongsuk W, Wongwises S (2009) Heat transfer enhancement and pressure drop characteristics of TiO2-water nanofluid in a double-tube counter flow heat exchanger. Int J Heat Mass Transf 52:2059–2067

    Article  Google Scholar 

  18. Asirvatham LG, Vishal N, Gangatharan SK, Lal DM (2009) Experimental study on forced convective heat transfer with low volume fraction of CuO/Water nanofluid. Energies 2:97–119

    Article  Google Scholar 

  19. Nnanna AGA, Rutherford W, Elomar W, Sankowski B (2009) Assessment of thermoelectric module with nanofluid heat exchanger. Appl Therm Eng 29:491–500

    Article  Google Scholar 

  20. Ho CJ, Wei LC, Li ZW (2010) An experimental investigation of forced convective cooling performance of a microchannel heat sink with Al2O3/water nanofluid. Appl Therm Eng 30:96–103

    Article  Google Scholar 

  21. Bang IC, Heo G (2009) An axiomatic design approach in development of nanofluid coolants. Appl Therm Eng 29:75–90

    Article  Google Scholar 

  22. Nguyen CT, Roy G, Gauthier C, Galanis N (2007) Heat transfer enhancement using Al2O3 water nanofluid for an electronic liquid cooling system. Appl Therm Eng 27:1501–1506

    Article  Google Scholar 

  23. Khanafer K, Vafai K, Lightstone M (2003) Buoyancy-driven heat transfer enhancement in a two dimensional enclosure utilizing nanofluids. Int J Heat Mass Transf 46:3639–3653

    Article  MATH  Google Scholar 

  24. Koo J, Kleinstreuer C (2005) Laminar nanofluid flow in microheat-sinks. Int J Heat Mass Transf 48:2652–266

    Google Scholar 

  25. Akbari M, Behzadmehr A, Shahraki F (2008) Fully developed mixed convection in horizontal and inclined tubes with uniform heat flux using nanofluid. Int J Heat Fluid Flow 29:545–556

    Article  Google Scholar 

  26. Akbarinia A, Behzadmehr A (2007) Numerical study of laminar mixed convection of a nanofluid in a horizontal curved tube. Appl Therm Eng 27:1327–1337

    Article  Google Scholar 

  27. Bianco V, Chiacchio F, Manca O, Nardini S (2009) Numerical investigation of nanofluids forced convection in circular tubes. Appl Therm Eng 29:3632–3642

    Article  Google Scholar 

  28. He Y, Mena Y, Zhao Y, Lu H, Ding Y (2009) Numerical investigation into the convective heat transfer of TiO2 nanofluids flowing through a straight tube under the laminar flow conditions. Appl Therm Eng 29:1965–1972

    Article  Google Scholar 

  29. Behzadmehr A, Saffar-Avval M, Galanis N (2007) Prediction of turbulent forced convection of a nanofluid in a tube with uniform heat flux using a two-phase approach. Int J Heat Fluid Flow 28:211–219

    Article  Google Scholar 

  30. Kakaç S, Pramuanjaroenkij A (2009) Review of convective heat transfer enhancement with nanofluids. Int J Heat Mass Transf 52:3187–3196

    Article  MATH  Google Scholar 

  31. Manninen M, Taivassalo V, Kallio S (1996) On the mixture model for multiphase flow. Technical Research Center of Finland, VTT Publications 288:9–18

  32. Schiller L, Naumann A (1935) A drag coefficient correlation. Z Ver Deutsch Ing 77:318–320

    Google Scholar 

  33. Maiga SE, Nguyen CT, Galanis N, Roy G (2004) Heat transfer behaviors of nanofluids in a uniformly heated tube. Super Lattices Microstruct 35:543–557

    Article  Google Scholar 

  34. Agrawal Y, Talbot L, Gong K (1978) Laser anemometer study development in curved circular pipes. J Fluid Mech 85:497–518

    Article  Google Scholar 

  35. Greenspan D (1973) Secondary flow in a curved tube. J Fluid Mech 57:167–176

    Article  MATH  Google Scholar 

  36. Rindt CCM, Van Steenhoven AA, Janssen JD, Vossers G (1991) Unsteady entrance flow in a 90o curved tube. J Fluid Mech 226:445–457

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Behzadmehr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alikhani, S., Behzadmehr, A. & Saffar-Avval, M. Numerical study of nanofluid mixed convection in a horizontal curved tube using two-phase approach. Heat Mass Transfer 47, 107–118 (2011). https://doi.org/10.1007/s00231-010-0677-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-010-0677-4

Keywords

Navigation