Skip to main content
Log in

Convection in ethylene glycol-based molybdenum disulfide nanofluid

Atangana–Baleanu fractional derivative approach

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This article aims to study the flow of ethylene glycol-based molybdenum disulfide generalized nanofluid over an isothermal vertical plate. A fractional model with non-singular and non-local kernel, namely Atangana–Baleanu fractional derivatives, is developed for Casson nanofluid in the form of partial differential equations along with appropriate initial and boundary conditions. Molybdenum disulfide nanoparticles of spherical shape are suspended in ethylene glycol taken as conventional base fluid. The exact solutions are developed for velocity and temperature via the Laplace transform technique. In limiting sense, the obtained solutions are reduced to fractional Newtonian \((\beta \to \infty )\), classical Casson fluid \((\alpha \to 1)\) and classical Newtonian nanofluid. The influence of various pertinent parameters is analyzed in various plots with the useful physical discussion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

\(p_{\text{y}}\) :

The yield stress of the non-Newtonian fluid

\(\pi\) :

The product of the component of deformation rate itself

\(\pi_{\text{c}}\) :

The critical value of this product

\(\mu_{\upgamma}\) :

Plastic dynamic viscosity

\(u\) :

Velocity of the fluid

\(T\) :

Temperature of the fluid

\(g\) :

Acceleration due to gravity

\(c_{\text{p}}\) :

Specific heat at a constant pressure

\(k_{\text{f}}\) :

Thermal conductivity of the fluid

\(T_{\infty }\) :

Fluid temperature far away from the plate

\(q\) :

Laplace transforms parameter

\(\nu_{\text{f}}\) :

Kinematic viscosity of the fluid

\(\mu_{\text{f}}\) :

Dynamic viscosity

\(\rho_{\text{f}}\) :

Fluid density

\(\rho_{\text{s}}\) :

The density of the solid

\(U\) :

The amplitude of the velocity

\(\beta_{\text{T}}\) :

The volumetric coefficient of thermal expansion

\(B_{0}\) :

External magnetic field

\(\rho_{\text{nf}}\) :

Nanofluids density

\(\mu_{\text{nf}}\) :

Dynamic viscosity of nanofluids

\(\sigma_{\text{nf}}\) :

The electrical conductivity of nanofluids

\(\beta\) :

The material parameter of Casson fluid

\((\beta_{\text{T}} )_{\text{nf}}\) :

Thermal expansion coefficient of nanofluids,

\((\rho c_{\text{p}} )_{\text{nf}}\) :

Specific heat capacity of nanofluids

\(k_{\text{nf}}\) :

The thermal conductivity of nanofluids

\(M\) :

Magnetic parameter

\(Gr\) :

Thermal Grasshof number

\(Pr\) :

Prandtl number

\({\text{Nu}}_{\text{x}}\) :

Nusselt number

\(\phi\) :

Nanoparticles volume fraction

\(\alpha\) :

Fractional order/fractional parameter

References

  1. Li Y, Tung S, Schneider E, Xi S. A review on development of nanofluid preparation and characterization. Powder Technol. 2009;196(2):89–101.

    Article  CAS  Google Scholar 

  2. Bashirnezhad K, Bazri S, Safaei MR, Goodarzi M, Dahari M, Mahian O, Wongwises S. Viscosity of nanofluids: a review of recent experimental studies. Int Commun Heat Mass Transf. 2016;73:114–23.

    Article  CAS  Google Scholar 

  3. Mohamoud MJ, Singh T, Mahmoud SE, Koc M, Samara A, Isaifan RJ, Atieh MA. Critical review on nanofluids: preparation, characterization and applications. J Nanomater. 2016. https://doi.org/10.1155/2016/6717624.

    Article  Google Scholar 

  4. Öztop HF, Estellé P, Yan WM, Al-Salem K, Orfi J, Mahian O. A brief review of natural convection in enclosures under localized heating with and without nanofluids. Int Commun Heat Mass Transf. 2015;60:37–44.

    Article  CAS  Google Scholar 

  5. Kasaeian A, Azarian RD, Mahian O, Kolsi L, Chamkha AJ, Wongwises S, Pop I. Nanofluid flow and heat transfer in porous media: a review of the latest developments. Int J Heat Mass Transf. 2017;107:778–91.

    Article  CAS  Google Scholar 

  6. Maxwell JC, Garnett W, Pesic P. An elementary treatise on electricity. North Chelmsford: Courier Corporation; 2005.

    Google Scholar 

  7. Gul A, Khan I, Shafie S, Khalid A, Khan A. Heat transfer in MHD mixed convection flow of a ferrofluid along a vertical channel. PLoS ONE. 2015;10(11):e0141213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Choi SUS, Eastman JA. In: International mechanical engineering congress and exhibition, San Francisco, CA, USA, 12–17 Nov 1995; 1995.

  9. Das SK, Choi SU, Yu W, Pradeep T. Nanofluids: science and technology. New York: Wiley; 2007.

    Book  Google Scholar 

  10. Wang XQ, Mujumdar AS. Heat transfer characteristics of nanofluids: a review. Int J Therm Sci. 2007;46(1):1–19.

    Article  Google Scholar 

  11. Ding Y, Chen H, Wang L, Yang CY, He Y, Yang W, Lee WP, Zhang L, Huo R. Heat transfer intensification using nanofluids. KONA Powder Part J. 2007;25:23–38.

    Article  CAS  Google Scholar 

  12. Wang XQ, Mujumdar AS. A review on nanofluids-part II: experiments and applications. Braz J Chem Eng. 2008;25(4):631–48.

    Article  Google Scholar 

  13. Buongiorno J. Convective transport in nanofluids. J Heat Transf. 2006;128(3):240–50.

    Article  Google Scholar 

  14. Ali F, Aamina B, Khan I, Sheikh NA, Saqib M. Magnetohydrodynamic flow of brinkman-type engine oil based MoS2-nanofluid in a rotating disk with Hall Effect. Int J Heat Technol. 2017;4(35):893–902.

    Google Scholar 

  15. Shahzad F, Haq RU, Al-Mdallal QM. Water driven Cu nanoparticles between two concentric ducts with oscillatory pressure gradient. J Mol Liq. 2016;224:322–32.

    Article  CAS  Google Scholar 

  16. Khan U, Ahmed N, Mohyud-Din ST. Heat transfer effects on carbon nanotubes suspended nanofluid flow in a channel with non-parallel walls under the effect of velocity slip boundary condition: a numerical study. Neural Comput Appl. 2017;28(1):37–46.

    Article  Google Scholar 

  17. Wakif A, Boulahia Z, Sehaqui R. Numerical analysis of the onset of longitudinal convective rolls in a porous medium saturated by an electrically conducting nanofluid in the presence of an external magnetic field. Results Phys. 2017. https://doi.org/10.1016/j.rinp.2017.06.003.

    Article  Google Scholar 

  18. Sheikholeslami M, Vajravelu K. Forced convection heat transfer in Fe3O4-ethylene glycol nanofluid under the influence of Coulomb force. J Mol Liq. 2017;233:203–10.

    Article  CAS  Google Scholar 

  19. Sheikholeslami M, Hayat T, Alsaedi A. Numerical simulation of nanofluid forced convection heat transfer improvement in existence of magnetic field using lattice Boltzmann method. Int J Heat Mass Transf. 2017;108:1870–83.

    Article  CAS  Google Scholar 

  20. Aman S, Khan I, Zulkhibri I, Al-Mdallal QM. Heat transfer enhancement in free convection flow of CNTs Maxwell nanofluids with four different types of molecular liquids. Sci Rep. 2017;7(2445):1–13.

    CAS  Google Scholar 

  21. Ali F, Gohar M, Khan I. MHD flow of water-based Brinkman type nanofluid over a vertical plate embedded in a porous medium with variable surface velocity, temperature and concentration. J Mol Liq. 2016;223:412–9.

    Article  CAS  Google Scholar 

  22. Wang H, Yu L, Lee YH, Shi Y, Hsu A, Chin ML, Li LJ, Dubey M, Kong J, Palacios T. Integrated circuits based on bilayer MoS2 transistors. Nano Lett. 2012;12(9):4674–80.

    Article  CAS  PubMed  Google Scholar 

  23. Das S, Chen HY, Penumatcha AV, Appenzeller J. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 2012;13(1):100–5.

    Article  CAS  PubMed  Google Scholar 

  24. Radisavljevic B, Radenovic A, Brivio J, Giacometti IV, Kis A. Single-layer MoS2 transistors. Nat Nanotechnol. 2011;6(3):147–50.

    Article  CAS  PubMed  Google Scholar 

  25. Castellanos-Gomez A, Poot M, Steele GA, Van der Zant HS, Agraït N, Rubio-Bollinger G. Mechanical properties of freely suspended semiconducting graphene-like layers based on MoS2. Nanoscale Res Lett. 2012;7(1):1.

    Article  Google Scholar 

  26. Winer WO. Molybdenum disulfide as a lubricant: a review of the fundamental knowledge. Wear. 1967;10(6):422–52.

    Article  CAS  Google Scholar 

  27. Kato H, Takama M, Iwai Y, Washida K, Sasaki Y. Wear and mechanical properties of sintered copper–tin composites containing graphite or molybdenum disulfide. Wear. 2003;255(1):573–8.

    Article  CAS  Google Scholar 

  28. Mao C, Huang Y, Zhou X, Gan H, Zhang J, Zhou Z. The tribological properties of nanofluid used in minimum quantity lubrication grinding. Int J Adv Manuf Technol. 2014;71(5–8):1221–8.

    Article  Google Scholar 

  29. Shafie S, Gul A, Khan I. Molybdenum disulfide nanoparticles suspended in water-based nanofluids with mixed convection and flow inside a channel filled with saturated porous medium. In: Proceedings of the 2nd international conference on mathematics, engineering and industrial applications (icomeia2016), Vol. 1775, No. 1. AIP Publishing; 2016. p. 030042.

  30. Khan I, Gul A, Shafie S. Effects of magnetic field on molybdenum disulfide nanofluids in mixed convection flow inside a channel filled with a saturated porous medium. J Porous Med. 2017;20(5):435–48.

    Article  Google Scholar 

  31. Khan I. Shape effects of MoS2 nanoparticles on MHD slip flow of molybdenum disulphide nanofluid in a porous medium. J Mol Liq. 2017;233:442–51.

    Article  CAS  Google Scholar 

  32. Saqib M, Ali F, Khan I, Sheikh NA, Jan SAA, Samiulhaq. Exact solutions for free convection flow of generalized Jeffrey fluid: a Caputo–Fabrizio fractional model. Alex Eng J. 2017. https://doi.org/10.1016/j.aej.2017.03.017.

  33. Hristov J. Derivatives with non-singular kernels from the Caputo–Fabrizio definition and beyond: appraising analysis with emphasis on diffusion models. In: Bhalekar S, editor. Frontiers in fractional calculus, vol. 1. Bentham Science Publishers; 2017. p. 270–342.

  34. Ali F, Saqib M, Khan I, Sheikh NA. Application of Caputo–Fabrizio derivatives to MHD free convection flow of generalized Walters’-B fluid model. Eur Phys J Plus. 2016;131(10):377.

    Article  CAS  Google Scholar 

  35. Sheikh NA, Ali F, Saqib M, Khan I, Jan SAA. A comparative study of Atangana–Baleanu and Caputo–Fabrizio fractional derivatives to the convective flow of a generalized Casson fluid. Eur Phys J Plus. 2017;132(1):54.

    Article  CAS  Google Scholar 

  36. Al-Mdallal Q, Khan A, Abro KA. Analytical solutions of fractional Walter’s B fluid with applications. Entropy. 2017.

  37. Abro KA, Khan I. Analysis of the heat and mass transfer in the MHD flow of a generalized Casson fluid in a porous space via non-integer order derivatives without a singular kernel. Chin J Phys. 2017;55(4):1583–95.

    Article  CAS  Google Scholar 

  38. Abro KA, Hussain M, Baig MM. An analytic study of molybdenum disulfide nanofluids using the modern approach of Atangana–Baleanu fractional derivatives. Eur Phys J Plus. 2017;132(10):439.

    Article  CAS  Google Scholar 

  39. Ali F, Jan SAA, Khan I, Gohar M, Sheikh NA. Solutions with special functions for time fractional free convection flow of Brinkman-type fluid. Eur Phys J Plus. 2016;131(9):310.

    Article  CAS  Google Scholar 

  40. Atangana A, Baleanu D. New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model. Therm Sci. 2016;20(2):763–9.

    Article  Google Scholar 

  41. Atanganaa A, Kocab I. On the new fractional derivative and application to nonlinear Baggs and Freedman model. J Nonlinear Sci Appl. 2016;9:2467–80.

    Article  Google Scholar 

  42. Atangana A, Koca I. Chaos in a simple nonlinear system with Atangana–Baleanu derivatives with fractional order. Chaos Solitons Fractals. 2016;89:1–8.

    Article  Google Scholar 

  43. Abro KA, Solangi MA. Heat transfer in magnetohydrodynamic second grade fluid with porous impacts using Caputo–Fabrizoi fractional derivatives. J Math. 2017;49(2):113–25.

    Google Scholar 

  44. Sheikh NA, Ali F, Khan I, Gohar M, Saqib M. On the applications of nanofluids to enhance the performance of solar collectors: a comparative analysis of Atangana–Baleanu and Caputo–Fabrizio fractional models. Eur Phys J Plus. 2017;132(12):540.

    Article  Google Scholar 

  45. Atangana A. On the new fractional derivative and application to nonlinear Fisher’s reaction–diffusion equation. Appl Math Comput. 2016;273:948–56.

    Google Scholar 

  46. Atangana A, Secer A. A note on fractional order derivatives and table of fractional derivatives of some special functions. Abstr Appl Anal. 2013;2013:279681. https://doi.org/10.1155/2013/279681.

    Article  Google Scholar 

  47. Sheikh NA, Ali F, Saqib M, Khan I, Jan SAA, Alshomrani AS, Alghamdi MS. Comparison and analysis of the Atangana–Baleanu and Caputo–Fabrizio fractional derivatives for generalized Casson fluid model with heat generation and chemical reaction. Results Phys. 2017;7:789–800.

    Article  Google Scholar 

  48. Casson N. A flow equation for pigment-oil suspensions of the printing ink type. Oxford: Pergamon Press; 1959.

    Google Scholar 

  49. Aghili A. Solution to time fractional Couette flow. In Other Words. 2017;3:1–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farhad Ali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saqib, M., Ali, F., Khan, I. et al. Convection in ethylene glycol-based molybdenum disulfide nanofluid. J Therm Anal Calorim 135, 523–532 (2019). https://doi.org/10.1007/s10973-018-7054-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7054-9

Keywords

Navigation