Skip to main content
Log in

An analytic study of molybdenum disulfide nanofluids using the modern approach of Atangana-Baleanu fractional derivatives

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The significance of the different shapes of molybdenum disulfide nanoparticles contained in ethylene glycol has recently attracted researchers, because of the numerical or experimental analyses on the shapes of molybdenum disulfide and the lack of fractionalized analytic approaches. This work is dedicated to examining the shape impacts of molybdenum disulfide nanofluids in the mixed convection flow with magnetic field and a porous medium. Ethylene glycol is chosen as the base fluid in which molybdenum disulfide nanoparticles are suspended. Non-spherically shaped molybdenum disulfide nanoparticles, namely, platelet, blade, cylinder and brick, are utilized in this analysis. The modeling of the problem is characterized by employing the modern approach of Atangana-Baleanu fractional derivatives and the governing partial differential equations are solved via Laplace transforms with inversion. Solutions are obtained for temperature distribution and velocity field and expressed in terms of compact form of \( \mathbf{M}\) -function, \( \mathbf{M}_{b}^{a}(T)\) . In the end, a figures are drawn to compare the different non-spherically shaped molybdenum disulfide nanoparticles. Furthermore, the Atangana-Baleanu fractional derivatives model has been compared with ordinary derivatives models and discussed graphically by setting various rheological parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.O. Winer, Wear 10, 422 (1967)

    Article  Google Scholar 

  2. Khan Ilyas, Gul Aaiza, Shafie Sharidan, J. Porous Media 20, 435 (2017)

    Article  Google Scholar 

  3. Y. Zhang, S. Gu, B. Yan, J. Ren, J. Mater. Chem. 22, 14843 (2012)

    Article  Google Scholar 

  4. Y. Zhang, C. Li, D. Jia, B. Li, Y. Wang, M. Yang, X. Zhang, J. Mater. Process. Technol. 232, 100 (2016)

    Article  Google Scholar 

  5. A. Dankert, L. Langouche, M.V. Kamalakar, S.P. Dash, ACS Nano 8, 476 (2014)

    Article  Google Scholar 

  6. S. Das, H.-Y. Chen, A.V. Penumatcha, J. Appenzeller, Nano Lett. 13, 100 (2012)

    Article  ADS  Google Scholar 

  7. B. Radisavljevic, M.B. Whitwick, A. Kis, ACS Nano. 5, 9934 (2011)

    Article  Google Scholar 

  8. H. Wang, L. Yu, Y.-H. Lee, Y. Shi, A. Hsu, M.L. Chin, T. Palacios, Nano Lett. 12, 4674 (2012)

    Article  ADS  Google Scholar 

  9. B.C. Pak, Y.I. Choi, Exp. Heat Transf. 11, 151 (1998)

    Article  ADS  Google Scholar 

  10. G. Shuying, Y. Zhang, B. Yan, Mater. Lett. 97, 169 (2013)

    Article  Google Scholar 

  11. Y. Zhang, S. Gu, B. Yan, J. Ren, J. Mater. Chem. 22, 14843 (2012)

    Article  Google Scholar 

  12. C. Mao, Y. Huang, X. Zhou, H. Gan, J. Zhang, Z. Zhou, Int. J. Adv. Manuf. Technol. 71, 1221 (2014)

    Article  Google Scholar 

  13. B. Shen, Minimum quantity lubrication grinding using nanofluids, PhD dissertation (University of Michigan, 2008)

  14. J.J. McBride, E.F. Westrum, J. Chem. Thermodyn. 8, 37 (1976)

    Article  Google Scholar 

  15. E. Benavente, M. Santa Ana, G. González, Phys. Status Solidi B 241, 2444 (2004)

    Article  ADS  Google Scholar 

  16. J. Liu, G.-M. Choi, D.G. Cahill, J. Appl. Phys. 116, 233107 (2014)

    Article  ADS  Google Scholar 

  17. Y. Ding, B. Xiao, RSC Adv. 5, 18391 (2015)

    Article  Google Scholar 

  18. K. Asma, I. Khan, S. Sharidan, Eur. Phys. J. Plus 130, 57 (2015)

    Article  Google Scholar 

  19. K. Asma, I. Khan, S. Sharidan, J. Mol. Liq. 221, 1175 (2016)

    Article  Google Scholar 

  20. E.V. Timofeeva, J.L. Routbort, D. Singh, J. Appl. Phys. 106, 014304 (2009)

    Article  ADS  Google Scholar 

  21. N. Athirah, M. Zin, I. Khan, S. Sharidan, J. Mol. Liq. 222, 138 (2016)

    Article  Google Scholar 

  22. R.U. Haq, S. Nadeem, Z.H. Khan, N.F.M. Noor, Physica E 73, 45 (2015)

    Article  ADS  Google Scholar 

  23. A. Khalid, I. Khan, S. Shafie, Eur. Phys. J. Plus 130, 57 (2015)

    Article  Google Scholar 

  24. M. Sheikholeslami, D.D. Ganji, Powder Technol. 253, 789 (2014)

    Article  Google Scholar 

  25. T. Hayat, M. Imtiaz, A. Alsaedi, J. Aerospace Eng. 29, 04015063 (2016)

    Article  Google Scholar 

  26. F. Ali, N.A. Sheikh, I. Khan, M. Saqib, J. Magn. & Magn. Mater. 423, 327 (2017)

    Article  ADS  Google Scholar 

  27. F. Ali, M. Saqib, I. Khan, N.A. Sheikh, Eur. Phys. J. Plus 131, 377 (2016)

    Article  Google Scholar 

  28. A. Kashif, H. Mukarrum, M. Mahmood, Progr. Fract. Differ. Appl. 3, 69 (2017)

    Article  Google Scholar 

  29. N.A. Sheikh, F. Ali, I. Khan, M. Saqib, Neural. Comput. Appl. (2016) https://doi.org/10.1007/s00521-016-2815-5

  30. Kashif Ali Abro, J. Appl. Environ. Biol. Sci. 6, 71 (2016)

    Google Scholar 

  31. Kashif Ali Abro, Muhammad Anwar Solangi, Muzaffar Hussain Laghari, Int. J. Adv. Appl. Math. Mech. 4, 5 (2017)

    MathSciNet  Google Scholar 

  32. Magdy A. Ezzat, Ahmed S. El Karamany, Z. Angew. Math. Phys. 62, 937 (2011)

    Article  MathSciNet  Google Scholar 

  33. Magdy A. Ezzat, Can. J. Phys. 72, 311 (1994)

    Article  ADS  Google Scholar 

  34. M. Ezzat, M. Zakaria, O. Shaker, F. Barakat, Acta Mech. 119, 147 (1996)

    Article  Google Scholar 

  35. Magdy A. Ezzat, Ahmed S. El-Karamany, Can. J. Phys. 81, 823 (2003)

    Article  ADS  Google Scholar 

  36. R. Hamilton, O. Crosser, Ind. Eng. Chem. Fund. 1, 187 (1962)

    Article  Google Scholar 

  37. E.V. Timofeeva, J.L. Routbort, D. Singh, J. Appl. Phys. 106, 014304 (2009)

    Article  ADS  Google Scholar 

  38. S. Das, R. Jana, Alexa. Eng. J. 54, 55 (2015)

    Article  Google Scholar 

  39. A. Abdon, D. Baleanu, Thermal Sci. 20, 763 (2016)

    Article  Google Scholar 

  40. A.S. Nadeem, A. Farhad, S. Muhammad, K. Ilyas, S.A.A. Jan, S.A. Ali, S.A. Metib, Results Phys. 7, 789 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kashif Ali Abro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali Abro, K., Hussain, M. & Mahmood Baig, M. An analytic study of molybdenum disulfide nanofluids using the modern approach of Atangana-Baleanu fractional derivatives. Eur. Phys. J. Plus 132, 439 (2017). https://doi.org/10.1140/epjp/i2017-11689-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2017-11689-y

Navigation