Skip to main content
Log in

Studies on the thermal properties of silicone polymer based thermal protection systems for space applications

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermal decomposition, thermal conductivity, specific heat and flammability of polydimethyl siloxane (PDMS) resin and three PDMS-based systems with three different types of additives were studied using various thermo-analytical techniques. The additives were found to modify the thermal properties of PDMS to different extents. Among the three systems, highest specific heat and lowest thermal conductivity, desired for thermal protection application, were obtained for System I. The thermal stability of the three systems is in the order System I > System II > System III. Even though System III showed the lowest specific heat and highest thermal conductivity, due to its very high LOI among all other systems, the system finds application as a flame retardant. Thermogravimetric–mass spectroscopic analysis was carried out to find out the decomposition products. The major decomposition product was identified as hexamethylcyclotrisiloxane in all the systems. The decomposition kinetics of these systems was investigated by thermogravimetry using multiple heating rate methods, viz. Kissinger and Flynn–Wall–Ozawa. The kinetic parameters, viz. activation energy and pre-exponential factor, were derived using the two methods for all the systems. From the kinetic study, it is confirmed that the activation energy for the decomposition of the neat PDMS decreased as decomposition progressed, whereas the activation energy increased for the silicone composite systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Koo JH, Miller MJ, Weispfenning J, Blackmon C. Silicone polymer composites for thermal protection system: fiber reinforcements and microstructures. J Compos Mater. 2011. doi:10.1177/0021998310381536.

    Google Scholar 

  2. Robert OE. Polymer additives and reinforcements. New york: CRC Press; 2000 Chapter 9.

    Google Scholar 

  3. Przemysław R, Witold Z, Dariusz B. Influence of cenosphere particles on thermal properties composites of silicon rubber. J Therm Anal Calorim. 2015;122:1307–18. doi:10.1007/s10973-015-4829-0.

    Article  Google Scholar 

  4. Przemysław R, Witold Z, Dariusz B. Effect of cenospheric fillers on the flammability and fire hazard of silicone rubber composites. J Therm Anal Calorim. 2016;125:1373–86. doi:10.1007/s10973-016-5741-y.

    Article  Google Scholar 

  5. Hanu LG, Simon GP, Cheng YB. Thermal stability and flammability of silicone polymer composites. Polym Degrad Stab. 2006;91:1373–9.

    Article  CAS  Google Scholar 

  6. Morales C, Möller M. Homopolymerization of poly(dimethyl siloxane) macromonomers via free radical polymerization. Rev Mexi de Ing Quím. 2007;6:219–28.

    Google Scholar 

  7. Marques MMP, Salvado IMM, Margaca FMA, Ferreira LM. The role of Zirconium as thermal stabilizer of PDMS–TEOS Hybrids. J Therm Anal Calorim. 2010;100:557–61. doi:10.1007/s10973-009-0180-7.

    Article  Google Scholar 

  8. Bescher E, Hoshino Y, Nishizawa Y, Cooley K, Mackenzie JD. The role of Fe in the thermal stabilization of ormosils. J Sol–Gel Sci Tech. 2003;26:297–301.

    Article  CAS  Google Scholar 

  9. Girish D, Mary ER. Kinetic aspects of the thermal degradation of polydimethyl siloxane and polydimethyl diphenyl siloxane. Polym Degrad Stab. 2002;76:17–24.

    Article  Google Scholar 

  10. Kimberly C, Sam C, Adri CT, Van D, William AG, Edward MK. Simulations on the thermal decomposition of a poly(dimethyl siloxane) polymer using the ReaxFF reactive force field. J Am Chem Soc. 2005;127:7192–202.

    Article  Google Scholar 

  11. Siska H, Claire L, Didier P, Jose´ ML, François G. Flame retardancy of silicone-based materials. Polym Degrad Stab. 2009;94:465–95.

    Article  Google Scholar 

  12. Standard test method for determining specific heat capacity by differential scanning calorimetry. ASTM E 1269-11.

  13. Standard test method for evaluating the resistance to thermal transmission of materials by the guarded heat flow meter technique. ASTM E 1530-11.

  14. Standard test method for measuring the minimum oxygen concentration to support candle- like combustion of plastics. ASTM D 2863-13.

  15. Li L, Jinlong Z, Xilei C, Chuanmei J, Shaoxiang L, Yuanxiang G. Influence of ferric hydroxide on smoke suppression properties and combustion behavior of intumescent flame retardant silicone rubber composites. J Therm Anal Calorim. 2015;119:487–97. doi:10.1007/s10973-014-4108-5.

    Article  Google Scholar 

  16. Radhakrishnan TS. New method for evaluation of kinetic parameters and mechanism of degradation from pyrolysis-GC studies: thermal degradation of polydimethyl siloxanes. J Appl Polym Sci. 1999;73:441–50.

    Article  CAS  Google Scholar 

  17. Camino G, Lomakin SM, Lazzari M. Polydimethyl siloxane thermal degradation, Part 1. Kinetic aspects. Polymer. 2001. doi:10.1016/S0032-3861(00)00652-2.

    Google Scholar 

  18. Thomas K, Kendrick TC. Thermal analysis of polydimethyl siloxanes, thermal degradation in controlled atmospheres. J Polym Sci Part A: Polym Chem. 1969;7:537–49.

    Article  CAS  Google Scholar 

  19. Robert AR. Therm Stable Elastom A Rev. Ordnance Systems Department. 1983.

  20. Bogatyr’ov VM, Borysenko MV. Thermal destruction of polydimethyl siloxane on a phosphorus-containing silica surface. J Therm Anal Calorim. 2000;62:335.

    Article  Google Scholar 

  21. Jovicic MC, Radicevic RZ, Budinski SJK. Curing of alkyds based on semi-drying oils with melamine resin. J Therm Anal Calorim. 2008;94:143–50.

    Article  CAS  Google Scholar 

  22. Supriya N, Bina KC, Rajeev R. DSC-TG studies on kinetics of curing and thermal decomposition of epoxy–ether amine systems. J Therm Anal Calorim. 2013. doi:10.1007/s10973-012-2805-5.

    Google Scholar 

  23. Vyazovkin S, Burnham AK, Criado JM. Perez-MLA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  24. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  25. Standard Test Method for Decomposition kinetics by Thermogravimetry using the Ozawa/Flynn/Wall Method, ASTM, E1641-13.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Supriya Nair.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nair, S., Aswathy, U., Mathew, A. et al. Studies on the thermal properties of silicone polymer based thermal protection systems for space applications. J Therm Anal Calorim 128, 1731–1741 (2017). https://doi.org/10.1007/s10973-016-6025-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-6025-2

Keywords

Navigation