Skip to main content
Log in

Synthesis and characterization of strontium-doped hydroxyapatite for biomedical applications

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the effect of strontium (Sr) doping into hydroxyapatite (HA) powders. It is well known that strontium promotes bone formation, reduces bone resorption and it is used to treat osteoporotic diseases as stated previously by researchers. Strontium-doped HA (Sr–HA) was produced by precipitation with increasing amount of ion exchange between calcium (Ca) and Sr. Two different Sr amounts as 2 and 4 mol% were doped into HA by adding Sr(NO3)2 to the reaction solution. The precipitated HA was separated from supernatant after the vacuum filtration. The filtered wet cake of HA was exposed to spray drying and calcined in an air furnace at 1200 °C. The produced-HA powders were analyzed by using SEM, FTIR, XRD and TG–DSC techniques. At the end of the study, the results showed that decomposition of HA to tri-calcium phosphate increases with increasing Sr content. Thermal analyses revealed that Sr-doped HA powders loose more mass than pure HA powders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hench LL. Bioceramics. J Am Ceram Soc. 1998;81:1705–28.

    Article  CAS  Google Scholar 

  2. Boanini E, Gazzano M, Bigi A. Ionic substitutions in calcium phosphates synthesized at low temperature. Acta Biomater. 2010;6:1882–94.

    Article  CAS  Google Scholar 

  3. Shepherd JH, Shepherd DV, Best SM. Substituted hydroxyapatites for bone repair. J Mater Sci Mater Med. 2012;23:2335–47.

    Article  CAS  Google Scholar 

  4. Turkoz M, Atilla AO, Evis Z. Silver and fluoride doped hydroxyapatites: investigation by microstructure, mechanical and antibacterial properties. Ceram Int. 2013;39:8925–31.

    Article  CAS  Google Scholar 

  5. Cox SC, Jamshidi P, Grover LM, Mallick KK. Preparation and characterisation of nanophase Sr, Mg, and Zn substituted hydroxyapatite by aqueous precipitation. Mater Sci Eng C. 2014;35:106–14.

    Article  CAS  Google Scholar 

  6. Landi E, Celotti G, Logroscino G, Tampieri A. Carbonated hydroxyapatite as bone substitute. J Eur Ceram Soc. 2003;23:2931–7.

    Article  CAS  Google Scholar 

  7. Lim PN, Teo EY, Ho B, Tay BY, Thian ES. Effect of silver content on the antibacterial and bioactive properties of silver-substituted hydroxyapatite. J Biomed Mater Res A. 2013;101A:2456–64.

    Article  Google Scholar 

  8. Stipniece L, Salma-Ancane K, Borodajenko N, Sokolova M, Jakovlevs D, Berzina-Cimdina L. Characterization of Mg-substituted hydroxyapatite synthesized by wet chemical method. Ceram Int. 2014;40:3261–7.

    Article  CAS  Google Scholar 

  9. Lala S, Brahmachari S, Das PK, Das D, Kar T, Pradhan SK. Biocompatible nanocrystalline natural bonelike carbonated hydroxyapatite synthesized by mechanical alloying in a record minimum time. Mater Sci Eng C. 2014;42:647–56.

    Article  CAS  Google Scholar 

  10. Tredwin CJ, Young AME, Neel AA, Georgiou G, Knowles JC. Hydroxyapatite, fluor-hydroxyapatite and fluorapatite produced via the sol–gel method: dissolution behaviour and biological properties after crystallisation. J Mater Sci Mater Med. 2014;25:47–53.

    Article  CAS  Google Scholar 

  11. Bigi A, Boanini E, Capuccini C, Gazzano M. Strontium-substituted hydroxyapatite nanocrystals. Inorg Chim Acta. 2007;360:1009–16.

    Article  CAS  Google Scholar 

  12. Pereiro I, Rodríguez-Valencia C, Serra C, Solla EL, Serra J, González P. Pulsed laser deposition of strontium-substituted hydroxyapatite coatings. Appl Surf Sci. 2012;258(23):9192–7.

    Article  CAS  Google Scholar 

  13. Capuccini C, Torricelli P, Boanini E, Gazzano M, Giardino R, Bigi A. Interaction of Sr-doped hydroxyapatite nanocrystals with osteoclast and osteoblast-like cells. J Biomed Mater Res A. 2009;89A(3):594–600.

    Article  CAS  Google Scholar 

  14. Guo D, Xu K, Zhao X, Han Y. Development of a strontium-containing hydroxyapatite bone cement”. Biomaterials. 2005;19:4073–83.

    Article  Google Scholar 

  15. Ravi ND, Balu R, Sampath Kumar T, Bandyopadhyay A. Strontium-substituted calcium deficient hydroxyapatite nanoparticles: synthesis, characterization, and antibacterial properties. J Am Ceram Soc. 2012;95:2700–8.

    Article  CAS  Google Scholar 

  16. Abert J, Bergmann C, Fischer H. Wet chemical synthesis of strontium-substituted hydroxyapatite and its influence on the mechanical and biological properties. Ceram Int. 2014;40:9195–203.

    Article  CAS  Google Scholar 

  17. Kim HW, Koh YH, Kong YM, Kang JG, Kim H-E. Strontium substituted calcium phosphate biphasic ceramics obtained by a powder precipitation method. J Mater Sci Mater Med. 2004;15:1129–34.

    Article  CAS  Google Scholar 

  18. Li ZY, Lam WM, Yang C, Xu B, Ni GX, Abbah SA, Cheung KMCK, Luk DK, Lu WW. Chemical composition, crystal size and lattice structural changes after incorporation of strontium into biomimetic apatite. Biomaterials. 2007;28:1452–60.

    Article  CAS  Google Scholar 

  19. Capuccini C, Torricelli P, Sima F, Boanini E, Ristoscu C, Bracci B, Socol G, Fini M, Mihailescu IN, Bigi A. Strontium-substituted hydroxyapatite coatings synthesized by pulsed-laser deposition: ın vitro osteoblast and osteoclast response. Acta Biomater. 2008;4:1885–93.

    Article  CAS  Google Scholar 

  20. Xue W, Hosick HL, Bandyopadhyay A, Bose S, Ding C, Luk KDK, Cheung KMC, Lu WW. Preparation and cell–materials interactions of plasma sprayed strontium-containing hydroxyapatite coating. Surf Coat Technol. 2007;201:4685–93.

    Article  CAS  Google Scholar 

  21. Li Y, Li Q, Zhu S, Luo E, Li J, Feng G, Liao Y, Hu J. The effect of strontium-substituted hydroxyapatite coating on implant fixation in ovariectomized rats. Biomaterials. 2010;31:9006–14.

    Article  CAS  Google Scholar 

  22. Tõnsuaadu K, Gross K, Plūduma L, Veiderma M. A review on the thermal stability of calcium apatites. J Therm Anal Calorim. 2012;110:647–59.

    Article  Google Scholar 

  23. Mostafa NY. Characterization, thermal stability and sintering of hydroxyapatite powders prepared by different routes. Mater Chem Phys. 2005;94:333–41.

    Article  CAS  Google Scholar 

  24. Sofronia AM, Baies R, Anghel EM, Marinescu CA, Tanasescu S. Thermal and structural characterization of synthetic and natural nanocrystalline hydroxyapatite. Mater Sci Eng C. 2014;43:153–63.

    Article  CAS  Google Scholar 

  25. Schumacher M, Henß A, Rohnke M, Gelinsky M. A novel and easy-to-prepare strontium(II) modified calcium phosphate bone cement with enhanced mechanical properties. Acta Biomater. 2013;9:7536–44.

    Article  CAS  Google Scholar 

  26. Petkova V, Koleva V, Kostova B, Sarov S. Structural and thermal transformations on high energy milling of natural apatite. J Therm Anal Calorim. 2015;121:217–25.

    Article  CAS  Google Scholar 

  27. Landi E, Tampieri A, Celotti G, Sprio S, Sandri M, Logroscino G. Sr-substituted hydroxyapatites for osteoporotic bone replacement. Acta Biomater. 2007;3:961–9.

    Article  CAS  Google Scholar 

  28. Raynaud S, Champion E, Bernache-Assollant D, Thomas P. Calcium phosphate apatites with variable Ca/P atomic ratio I. Synthesis, characterisation and thermal stability of powders. Biomaterials. 2002;23:1065–72.

    Article  CAS  Google Scholar 

  29. Ślósarczyk A, Paszkiewicz Z, Paluszkiewicz C. FTIR and XRD evaluation of carbonated hydroxyapatite powders synthesized by wet methods. J Mol Struct. 2005;744–747:657–61.

    Article  Google Scholar 

  30. Afshar A, Ghorbani M, Ehsani N, Saeri MR, Sorrell CC. Some important factors in the wet precipitation process of hydroxyapatite. Mater Des. 2003;24:197–202.

    Article  CAS  Google Scholar 

  31. Fathi MH, Hanifi A, Mortazavi V. Preparation and bioactivity evaluation of bone-like hydroxyapatite nanopowder. J Mater Process Technol. 2008;202:536–42.

    Article  CAS  Google Scholar 

  32. Ashok M, Sundaram NM, Kalkura SN. Crystallization of hydroxyapatite at physiological temperature. Mater Lett. 2003;57:2066–70.

    Article  CAS  Google Scholar 

  33. Mobasherpour I, Heshajin MS, Kazemzadeh A, Zakeri M. Synthesis of nanocrystalline hydroxyapatite by using precipitation method. J Alloys Compd. 2007;430:330–3.

    Article  CAS  Google Scholar 

  34. Ergun C. Synthesis and characterization of machinable calcium phosphate/lanthanum phosphate composites. J Mater Process Technol. 2008;199:178–84.

    Article  CAS  Google Scholar 

  35. Renaudin G, Jallot E, Nedelec JM. Effect of strontium substitution on the composition and microstructure of sol–gel derived calcium phosphates. J Sol-Gel Sci Technol. 2008;51:287–94.

    Article  Google Scholar 

  36. Silva LM, Menezes DS, Luis Eduardo Almeida LE, Anselme K, Dentzer J, Araujo E. The role of the counter-ions present in syntheses on the thermal stabilization of strontium and/or calcium apatites. Mater Sci Eng B. 2015;199:77–86.

    Article  Google Scholar 

  37. Miyaji F, Kono Y, Suyama Y. Formation and structure of zinc-substituted calcium hydroxyapatite. Mater Res Bull. 2005;40:209–20.

    Article  CAS  Google Scholar 

  38. Kim I-S, Kumta PN. Sol–gel synthesis and characterization of nanostructured hydroxyapatite powder. Mater Sci Eng B. 2004;111:232–6.

    Article  Google Scholar 

  39. Tredwin CJ, Young AM, Georgiou G, Shin S-H, Kim H-W, Knowles JC. Hydroxyapatite, fluor-hydroxyapatite and fluorapatite produced via the sol–gel method. Optimisation, characterisation and rheology. Dent Mater. 2013;29:166–73.

    Article  CAS  Google Scholar 

  40. Patel N, Gibson IR, Ke S, Best SM, Bonfield W. Calcining influence on the powder properties of hydroxyapatite. J Mater Sci Mater Med. 2001;12:181–8.

    Article  CAS  Google Scholar 

  41. Wang A-J, Lu Y-P, Zhu R-F, Li S-T, Xiao G-Y, Zhao G-F, Xu W-H. Effect of sintering on porosity, phase, and surface morphology of spray dried hydroxyapatite microspheres. J Biomed Mater Res A. 2008;87A:557–62.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yıldız Yaralı Özbek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özbek, Y.Y., Baştan, F.E. & Üstel, F. Synthesis and characterization of strontium-doped hydroxyapatite for biomedical applications. J Therm Anal Calorim 125, 745–750 (2016). https://doi.org/10.1007/s10973-016-5607-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5607-3

Keywords

Navigation