Skip to main content
Log in

Purity test of precipitated apatites by TG/DTA/EGA–MS

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Pure Ca hydroxyapatites (CaHAp) and Na-, Mg-, Zn- and Sr-substituted precipitated apatites were characterized by X-ray diffraction analysis, Fourier transformed infrared spectroscopy and element, chemical, and TG/DTA–EGA–MS analysis at their heating up to 1200 °C in Ar atmosphere. The evolvement of H2O, CO2, NH3, and NxOy was followed by mass spectroscopy (MS). Comparison of thermal behavior of pure CaHAps and cation-substituted apatites indicates that the exact temperatures of the release of gases (thermal stability) depend strongly on the chemical composition and crystallinity of sample. The presence of nitrogen species was detected by TA–MS in all precipitated apatites, and its content (0.01–1 %) depends on the synthesis conditions, the washing profoundness as well as on the cationic composition of apatite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fleet ME. Carbonated hydroxyapatite: materials, synthesis and applications. Singapur: CRC Press; 2014.

    Google Scholar 

  2. Khattech I, Jemal M. Etude de la decomposition thermique de fluorapatites carbonatees. Thermochim Acta. 1985;95(1):119–28.

    Article  CAS  Google Scholar 

  3. Dowker SEP, Elliott JC. Infrared study of the formation, loss, and location of cyanate and cyanamide in thermally treated apatites. J Solid State Chem. 1983;49(3):334–40.

    Article  CAS  Google Scholar 

  4. Vignoles M, Bonel G, Young RA. Occurrence of nitrogenous species in precipitated B-type carbonated hydroxyapatites. Calcif Tissue Int. 1987;40(2):64–70.

    Article  CAS  Google Scholar 

  5. Elliot JC. Structure and chemistry of the apatites and other calcium orthophosphates. 1st ed. Amsterdam: Elsevier; 1994.

    Google Scholar 

  6. Dorozhkin SV. Calcium orthophosphates: occurrence, properties, biomineralization, pathological calcification and biomimetic applications. Biomatter. 2011;1(2):121–64.

    Article  Google Scholar 

  7. Vandecandelaere NR, Drouet C. Biomimetic apatite-based biomaterials: on the critical impact of synthesis and post-synthesis parameters. J Mater Sci Mater Med. 2012;23:2593–606.

    Article  CAS  Google Scholar 

  8. Lee W-H, Zavgorodniy AV, Loo C-Y, Rohanizadeh R. Synthesis and characterization of hydroxyapatite with different crystallinity: effects on protein adsorption and release. J Biomed Mater Res Part A. 2012;100A(6):1539–49.

    Article  CAS  Google Scholar 

  9. Manafi S, Joughehdoust S, Badiee SH. Effect of pH on morphology, size and composition of calcium phosphate phase obtained in wet chemical. Int J Nanomanuf. 2010;5(1–2):169–78.

    Article  CAS  Google Scholar 

  10. Kumar NA. Hydroxyapatite synthesis methodologies: an overview. Int J ChemTech Res. 2010;2(2):903–7.

    Google Scholar 

  11. Zyman Z, Epple M, Rokhmistrov D, Glushko V. On impurities and the internal structure in precipitates occurring during the precipitation of nanocrystalline calcium phosphate. Materialwiss Werkstofftech. 2009;40(4):297–301.

    Article  CAS  Google Scholar 

  12. Danilchenko SN, Pokrovskiy VA, Bogatyrov VM, Sukhodub LF, Sulkio-Cleff B. Carbonate location in bone tissue mineral by X-ray diffraction and temperature-programmed desorption mass spectrometry. Cryst Res Technol. 2005;40(7):692–7.

    Article  CAS  Google Scholar 

  13. Peters F, Schwarz K, Epple M. The structure of bone studied with synchrotron X-ray diffraction, X-ray absorption spectroscopy and thermal analysis. Thermochim Acta. 2000;361(1–2):131–8.

    Article  CAS  Google Scholar 

  14. Onishi A, Thomas PS, Stuart BH, Guerbois JP, Forbes SL. TG-MS analysis of the thermal decomposition of pig bone for forensic applications. J Therm Anal Calorim. 2008;92(1):87–90.

    Article  CAS  Google Scholar 

  15. Devièse T, Colombini MP, Regert M, Stuart BH, Guerbois JP. TGMS analysis of archaeological bone from burials of the late Roman period. J Therm Anal Calorim. 2010;99(3):811–3.

    Article  Google Scholar 

  16. Kohutová A, Honcová P, Svoboda L, Bezdička P, Maříková M. Structural characterization and thermal behaviour of biological hydroxyapatite. J Therm Anal Calorim. 2012;108(1):163–70.

    Article  Google Scholar 

  17. Teruel JdeD, Alcolea A, Hernández A, Ruiz AJO. Comparison of chemical composition of enamel and dentine in human, bovine, porcine and ovine teeth. Arch Oral Biol. 2015;60(5):768–75.

    Article  CAS  Google Scholar 

  18. Materazzi S, Vecchio S. Evolved gas analysis by mass spectrometry. Appl Spectrosc Rev. 2011;46(4):261–340.

    Article  Google Scholar 

  19. Maciejewski M, Baiker A. Quantitative calibration of mass spectrometric signals measured in coupled TA–MS system. Thermochim Acta. 1997;295(1–2):95–105.

    Article  CAS  Google Scholar 

  20. Laurencin D, Almora-Barrios N, de Leeuw NH, Gervais C, Bonhomme C, Mauri F, et al. Magnesium incorporation into hydroxyapatite. Biomaterials. 2011;32(7):1826–37.

    Article  CAS  Google Scholar 

  21. Chappell H, Shepherd D, Best S. Zinc substituted hydroxyapatite—a comparison of modelling and experimental data. Key Eng Mater. 2008;396–398:729–32.

    Google Scholar 

  22. Imrie FE, Aina V, Lusvardi G, Malavasi G, Gibson IR, Cerrato G, Annaz B. Synthesis and characterisation of strontium and magnesium co-substituted biphasic calcium phosphates. Key Eng Mater. 2012;529–530:88–93.

    Article  Google Scholar 

  23. Markovic MF, Fowler BO, Tung MS. Preparation and comprehensive characterization of a calcium hydroxyapatite reference material. J Res Nat Inst Stand Technol. 2009;109(6):533–68.

    Google Scholar 

  24. Nyquist RA, Putzig CL, Leugers MA. Infrared and Raman spectral atlas of inorganic compounds and organic salts. San Diego: Academic Press; 1997.

    Google Scholar 

  25. Tõnsuaadu K, Gross K, Plūduma L, Veiderma M. A review on the thermal stability of calcium apatites. J Therm Anal Calorim. 2012;110(2):647–59.

    Article  Google Scholar 

  26. Pham Minh D, Galera Martínez M, Nzihou A, Sharrock P. Thermal behavior of apatitic calcium phosphates synthesized from calcium carbonate and orthophosphoric acid or potassium dihydrogen orthophosphate. J Therm Anal Calorim. 2013;112(3):1145–55.

    Article  CAS  Google Scholar 

  27. Chaturvedi S, Dave PN. Review on thermal decomposition of ammonium nitrate. J Energy Mater. 2013;31(1):1–26.

    Article  CAS  Google Scholar 

  28. Manelis GB. Thermal decomposition and combustion of explosives and propellants. London: Taylor and Francis; 2003.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Estonian Ministry of Education and Science Project IUT33-19 and ERMOS Grant No. GJE131.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaia Tõnsuaadu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tõnsuaadu, K., Bogdanoviciene, I. & Traksmaa, R. Purity test of precipitated apatites by TG/DTA/EGA–MS. J Therm Anal Calorim 125, 919–925 (2016). https://doi.org/10.1007/s10973-016-5447-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5447-1

Keywords

Navigation