Skip to main content
Log in

Thermal behavior of apatitic calcium phosphates synthesized from calcium carbonate and orthophosphoric acid or potassium dihydrogen orthophosphate

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The synthesis of calcium hydroxyapatite powder (Ca-HA) from orthophosphoric acid or from potassium dihydrogen orthophosphate and calcium carbonate was carried out under moderate conditions. A better dissolution of calcium carbonate and a complete precipitation of the orthophosphate species were obtained with orthophosphoric acid, indicating that it may be of interest as a phosphate source compared with potassium dihydrogen orthophosphate. The influence of calcination treatment on the physico-chemical properties of the solids is discussed in this paper. Different characterization techniques such as specific surface area (S BET), true density, particle size distribution, thermo-mechanical analysis, simultaneous thermogravimetry and differential scanning calorimetry analysis, X-ray diffraction and infrared were performed to understand the phase changes during thermal treatment. Specific surface area decreased while true density and particle size increased with the rise in the calcination temperature, due to the sintering of particles and the chemical reactions occurring at high temperatures. Mixtures of well-crystallized Ca-HA and tricalcium phosphate (TCP) or well-crystallized Ca-HA, CaO, and TCP were obtained after calcination at 800–1,000 °C of the solid products starting from orthophosphoric acid or potassium dihydrogen orthophosphate, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Habraken WJEM, Wolke JGC, Jansen JA. Ceramic composites as matrices and scaffolds for drug delivery in tissue engineering. Adv Drug Deliv Rev. 2007;59:234–48.

    Article  CAS  Google Scholar 

  2. Saha SK, Banerjee A, Banerjee S, Bose S. Synthesis of nanocrystalline hydroxyapatite using surfactant template systems: role of templates in controlling morphology. Mater Sci Eng C. 2009;29:2294–301.

    Article  CAS  Google Scholar 

  3. Baillez S, Nzihou A, Bernache-Assolant D, Champion E, Sharrock P. Removal of aqueous lead ions by hydroxyapatites: equilibria and kinetic processes. J Hazard Mater. 2007;A139:443–6.

    Google Scholar 

  4. Bianco A, Cacciotti I, Lombardi M, Montanaro L, Gusmano G. Thermal stability and sintering behaviour of hydroxyapatite nanopowders. J Therm Anal Calorim. 2007;88:237–43.

    Article  CAS  Google Scholar 

  5. De Campos M, Muller FA, Bressiani AHA, Bressiani JC, Greil P. Sonochemical synthesis of calcium phosphate powders. J Mater Sci Mater Med. 2007;18:669–75.

    Article  CAS  Google Scholar 

  6. Zyman ZZ, Tkachenko MV, Polevodin DV. Preparation and characterization of biphasic calcium phosphate ceramics of desired composition. J Mater Sci Mater Med. 2008;19:2819–25.

    Article  CAS  Google Scholar 

  7. Saeki T. A new type of CO2 gas sensor comprising porous hydroxyapatite ceramics. Sens Actuators. 1998;15:145–51.

    Google Scholar 

  8. Boukha Z, Kacimi M, Pereira MFR, Faria JL, Figueiredo JL, Ziyad M. Methane dry reforming on Ni loaded hydroxyapatite and fluoroapatite. Appl Catal A. 2007;317:299–309.

    Article  CAS  Google Scholar 

  9. Khachani M, Kacimi M, Ensuque A, Piquemal JY, Connan C, Bozon-Verduraz F, Ziyad M. Iron–calcium–hydroxyapatite catalysts: iron speciation and comparative performances in butan-2-ol conversion and propane oxidative dehydrogenation. Appl Catal A. 2010;388:113–23.

    Article  CAS  Google Scholar 

  10. Pham Minh D, Sebei H, Nzihou A, Sharrock P. Apatitic calcium phosphates: synthesis, characterization and reactivity in the removal of lead(II) from aqueous solution. Chem Eng J. 2012;198–199:180–90.

    Article  Google Scholar 

  11. Kim DW, Cho IS, Kim JY, Jang HL, Han GS, Ryu HS, Shin H, Jung HS, Kim H, Hong KS. Simple large-scale synthesis of hydroxyapatite nanoparticles: in situ observation of crystallization process. Langmuir. 2010;26:384–8.

    Article  CAS  Google Scholar 

  12. Elliott JC. Structure and chemistry of the apatites and other calcium orthophosphates. In: Studies in inorganic chemistry, vol 18. Amsterdam: Elsevier; 1994.

  13. El Feki H, Khattech I, Jemal M, Rey C. Décomposition thermique d’hydroxyapatites carbonatées sodées. Thermochim Acta. 1994;237:99–110.

    Article  CAS  Google Scholar 

  14. Tônsuaadu K, Peld M, Leskela T, Mannonen R, Niinisto L, Veiderma M. A thermoanalytical study of synthetic carbonate-containing apatites. Thermochim Acta. 1995;256:55–65.

    Article  Google Scholar 

  15. Wilson RM, Elliott JC, Dowker SEP, Smith RI. Rietveld structure refinement of precipitated carbonate apatite using neutron diffraction data. Biomaterials. 2004;25:2205–13.

    Article  CAS  Google Scholar 

  16. Yao F, LeGeros JP, LeGeros RZ. Simultaneous incorporation of carbonate and fluoride in synthetic apatites: effect on crystallographic and physico-chemical properties. Acta Biomater. 2009;5:2169–77.

    Article  CAS  Google Scholar 

  17. Landin M, Rowe RC, York P. Particle size effects on the dehydration of dicalcium phosphate dihydrate powders. Int J Pharm. 1994;104:271–5.

    Article  CAS  Google Scholar 

  18. Yoğurtcuoğlu E, Uçurum M. Surface modification of calcite by wet-stirred ball milling and its properties. Powder Technol. 2011;214:47–53.

    Article  Google Scholar 

  19. Vagenas NV, Gatsouli A, Kontoyannis CG. Quantitative analysis of synthetic calcium carbonate polymorphs using FT-IR spectroscopy. Talanta. 2003;59:831–6.

    Article  CAS  Google Scholar 

  20. Gunasekaran S, Anbalagan G. Spectroscopic study of phase transitions in natural calcite mineral. Spectrochim Acta. 2008;A69:1246–51.

    Google Scholar 

  21. Karlinsey RL, Mackey AC, Walker ER, Frederick KE. Preparation, characterization and in vitro efficacy of an acid-modified β-TCP material for dental hard-tissue remineralization. Acta Biomater. 2010;6:969–78.

    Article  CAS  Google Scholar 

  22. Coelho PG, Coimbra ME, Ribeiro C, Fancio E, Higa O, Suzuki M, Marincola M. Physico/chemical characterization and preliminary human histology assessment of a β-TCP particulate material for bone augmentation. Mater Sci Eng C. 2009;29:2085–91.

    Article  CAS  Google Scholar 

  23. Koumoulidis GC, Trapalis CC, Vaimakis TC. Sintering of hydroxyapatite lath-like powders. J Therm Anal Calorim. 2006;84:165–74.

    Article  CAS  Google Scholar 

  24. Bailliez S, Nzihou A. The kinetics of surface area reduction during isothermal sintering of hydroxyapatite adsorbent. Chem Eng J. 2004;98:141–52.

    Article  CAS  Google Scholar 

  25. Arifuzzaman SM, Rohani S. Experimental study of brushite precipitation. J Cryst Growth. 2004;267:624–34.

    Article  CAS  Google Scholar 

  26. Stulajterova R, Medvecky L. Effect of calcium ions on transformation brushite to hydroxyapatite in aqueous solutions. Colloids Surf A. 2008;316:104–9.

    Article  CAS  Google Scholar 

  27. Jinawath S, Sujaridworakun P. Fabrication of porous calcium phosphates. Mater Sci Eng C. 2002;22:41–6.

    Article  Google Scholar 

  28. Frost RL, Palmer SJ. Thermal stability of the ‘cave’ mineral brushite CaHPO4·2H2O—mechanism of formation and decomposition. Thermochim Acta. 2011;521:14–7.

    Article  CAS  Google Scholar 

  29. Mitsionis AI, Vaimakis TC. A calorimetric study of the temperature effect on calcium phosphate precipitation. J Therm Anal Calorim. 2010;99:785–9.

    Article  CAS  Google Scholar 

  30. Zawrah MF, Shaw L. Liquid-phase sintering of SiC in presence of CaO. Ceram Int. 2004;30:721–5.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support from Dr. Nathalie Lyczko, Mr. Philippe Accart, Mr. Denis Marty, and Ms. Christine Rolland at the centre RAPSODEE for different measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doan Pham Minh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pham Minh, D., Galera Martínez, M., Nzihou, A. et al. Thermal behavior of apatitic calcium phosphates synthesized from calcium carbonate and orthophosphoric acid or potassium dihydrogen orthophosphate. J Therm Anal Calorim 112, 1145–1155 (2013). https://doi.org/10.1007/s10973-012-2695-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2695-6

Keywords

Navigation