Skip to main content
Log in

Structural characterization and thermal behaviour of biological hydroxyapatite

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermal study and structural characterization of biological hydroxyapatite (HA) samples were done as well as their comparison with commercial and synthetic samples in this study. The X-ray micro analyser shows that all three samples of human teeth (HT1–HT3) contain two types of HA structures with different crystallite sizes, unlike sample of bovine thigh-bone (BTB). The bone sample was composed only of one HA phase with varied porosity. The molar Ca/P ratio in biological samples was lower compared to theoretical ratio for pure HA; moreover, in the case of teeth, Ca/P ratio varyies between the centre and the periphery of the cross-sectional samples. Thermogravimetry of the biological samples showed mass decreases—three regions for the bone and four regions for the teeth. In comparison, commercial HA has only two-step weight loss and synthetic HA three-step weight loss. After the calcination up to 1280 °C all the samples of teeth transformed into whitlockite, β-(Ca,Mg)3(PO4)2 (98 wt%) and 2 wt% HA. Besides, HT3 contained further trace amount of hilgenstockite (HIL, Ca4P2O9). The sample BTB partly transited from natural HA into HIL (6 wt%) and lime, CaO (14 wt%). X-ray powder diffraction (XRD) proved occurrence of HIL (9 wt%) beside stability part HA (91 wt%) in the commercial HA after thermal treatment but the synthetic HA composed from Ca3(PO4)2 (74 wt%) and HA (26 wt%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Palmer LC, Newcomb CJ, et al. Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel. Chem Rev. 2008;108:4754–83.

    Article  CAS  Google Scholar 

  2. Dorozhkin SV. Calcium orthophosphates in nature, biology and medicine. Materials. 2009;2:399–498.

    Article  CAS  Google Scholar 

  3. LeGeros RZ. Formation and transformation of calcium phosphates: relevance to vascular calcification. Z Kardiol. 2001;90:116–24.

    Article  Google Scholar 

  4. Ito A, Onuma K. Crystal growth technology. London: Wiliam Andrew Publishing; 2003.

    Google Scholar 

  5. Chen ZF, Darvell BW, Leung VWH. Hydroxyapatite solubility in simple inorganic solutions. Arch Oral Biol. 2004;49:359–67.

    Article  CAS  Google Scholar 

  6. Yujiro W, Toshiyuki I, Yasushi S. Type-A zeolites with hydroxyapatite surface layers formed by an ion exchange reaction. J Eur Ceram Soc. 2006;26:469–74.

    Article  Google Scholar 

  7. Reddy MP, Venugopal A. Hydroxyapatite photocatalytic degradation of calmagite (an azo dye) in aqueous suspension. Appl Catal B. 2007;69:164–70.

    Article  CAS  Google Scholar 

  8. Baillez S, Nzihou A, Bernache-Assolant D. Removal of aqueous lead ions by hydroxyapatites: equilibria and kinetic processes. J Hazard Mater. 2007;139:443–6.

    Article  Google Scholar 

  9. Reddy MP, Venugopal A, Subrahmanyam M. Hydroxyapatite-supported Ag-TiO2 as Escherichia coli disinfection photocatalyst. Water Res. 2007;41:379–86.

    Article  CAS  Google Scholar 

  10. Omelon SJ, Grynpas MD. Relationships between polyphosphate chemistry, biochemistry and apatite biomineralization. Chem Rev. 2008;108:4694–715.

    Article  CAS  Google Scholar 

  11. Rey C, et al. Chemical diversity of apatites. Adv Sci Technol. 2006;49:27–36.

    Article  CAS  Google Scholar 

  12. Daculsi G, Bouler JM, LeGeros RZ. Adaptive crystal formation in normal and pathological calcifications in synthetic calcium phosphate and related biomaterials. Int Rev Cytol. 1997;172:129–91.

    Article  CAS  Google Scholar 

  13. LeGeros RZ. Calcium phosphates in oral biology and medicine. Basel: Karger; 1991.

    Google Scholar 

  14. Prakash KH, et al. Apparent solubility of hydroxyapatite in aqueous medium and its influence on the morphology of nanocrystallites with precipitation temperature. Langmuir. 2006;22:11002–8.

    Article  CAS  Google Scholar 

  15. Sanosh KP, et al. Preparation and characterization of nano-hydroxyapatite powder using sol–gel technique. Bull Mater Sci. 2009;32:465–70.

    Article  CAS  Google Scholar 

  16. Yoon SY, et al. Synthesis of hydroxyapatite whiskers by hydrolysis of α-tricalcium phosphate using microwave heating. Mater Chem Phys. 2005;91:48–53.

    Article  CAS  Google Scholar 

  17. Earl JS, et al. Hydrothermal synthesis of hydroxyapatite. J Phys Conf Ser. 2006;26:268–71.

    Article  Google Scholar 

  18. Kaloustian J, et al. The use of thermal analysis in determination of some urinary calculi of calcium oxalate. J Therm Anal Calorim. 2002;70:959–73.

    Article  CAS  Google Scholar 

  19. Madhurambal G, Subha R, Mojumdar SC. Crystallization and thermal characterization of calcium hydrogen phosphate dihydrate crystals. J Therm Anal Calorim. 2009;96:73–6.

    Article  CAS  Google Scholar 

  20. Paulik F, et al. Investigation of the composition and crystal structure of bone salt by derivatography and infrared spectrophotometry. Hoppe Seyler’s Z Physiol Chem. 1969;350:418–26.

    Article  CAS  Google Scholar 

  21. Mezahi FZ, et al. Dissolution kinetic and structural behaviour of natural hydroxyapatite vs. thermal treatment. J Therm Anal Calorim. 2009;95:21–9.

    Article  CAS  Google Scholar 

  22. Mitsionis AI, Vaimakis TC. A calorimetric study of the temperature effect on calcium phosphate precipitation. J Therm Anal Calorim. 2010;99:785–9.

    Article  CAS  Google Scholar 

  23. Holager J. Thermogravimetric examination of enamel and dentin. J Dent Res. 1970;49:546–8.

    Article  CAS  Google Scholar 

  24. JCPDS PDF-2 database, release 54. Newton Sq.: International Centre for Diffraction Data; 2004.

  25. Diamanti I, et al. Effect of fluoride and of calcium sodium phosphosilicate toothpastes on pre-softened dentin demineralization and remineralization in vitro. J Dent. 2010;38:671–7.

    Article  CAS  Google Scholar 

  26. Hattab FN. The state of fluorides in toothpastes. J Dent. 1989;17:47–54.

    Article  CAS  Google Scholar 

  27. LeGeros RY, Bonel G, Legros R. Types of H2O in human enamel and in precipitated apatites. Calcif Tiss Res. 1987;26:111–8.

    Article  Google Scholar 

  28. Wang L, Nancollas GH. Calcium orthophosphates: crystallization and dissolution. Chem Rew. 2008;108:4628–69.

    Article  CAS  Google Scholar 

  29. McConnell D. Apatite. Vienna: Springer; 1973.

    Google Scholar 

  30. Posner AS. Crystal chemistry of bone mineral. Physiol Rev. 1969;49:760–92.

    CAS  Google Scholar 

  31. Shi D. Biomaterials and tissue engineering. Berlin: Springer; 2004.

    Google Scholar 

  32. Aras NK, Yiimaz G, Alkan S, Korkusuz F. Trace elements in human bone determined by neutron activation analysis. J Radioanal Nucl Chem. 1999;239:79–86.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Czech Ministry of Education, Youth and Sports under the project MSM 0021627501, and IGA University of Pardubice (SGFChT04). Special thanks to Milan Vlček from Joint Laboratory of Solid State Chemistry, University of Pardubice.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anna Kohutová or Pavla Honcová.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kohutová, A., Honcová, P., Svoboda, L. et al. Structural characterization and thermal behaviour of biological hydroxyapatite. J Therm Anal Calorim 108, 163–170 (2012). https://doi.org/10.1007/s10973-011-1942-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1942-6

Keywords

Navigation