Skip to main content
Log in

Determination of activation energy as a function of conversion for the oxidation of heavy and light crude oils in relation to in situ combustion

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Efficient design of in situ combustion depends on accurate kinetic study of crude oil oxidation. We aimed to study the variation of activation energy in both heavy and light crude oils. TG/DTG and DSC performed under atmospheric air from 100 to 800 °C in four different heating rates. Three distinct reaction regions were observed known as low-temperature oxidation, fuel deposition and high-temperature oxidation. Increase in heating rate shifted onset of oxidation reactions to higher temperatures. Three isoconversional kinetic models were also used to analyze the conversion dependence of the activation energy (E α). Reaction regions were analyzed separately because their reactions schemes are not the same. The estimated E α values of different models at each degree of conversion were nearly similar. Activation energy of crude oil varied considerably with conversion in some reaction regions. Therefore, average value of activation energy is not always a reliable parameter for in situ combustion models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Thomas S. Enhanced oil recovery-an overview. Oil Gas Sci Technol. 2008;63:9–19.

    Article  CAS  Google Scholar 

  2. Meyer RF, Attanasi ED. Heavy oil and natural bitumen: strategic petroleum resources. U.S. geological survey. FactSheet 70–30, August 2003. http://pubs.usgs.gov/fs/fs070-03/fs070-03.html. Accessed 1 Dec 2010.

  3. Tadema HJ, editor. Mechanism of oil production by underground combustion. In: Proceedings of the 5th world petroleum congress, section II, paper 22; 1959.

  4. Vossoughi S, Bartlett GW, Willhite GP, editors. Development of a kinetic model for in-situ combustion and prediction of the process variables using TGA/DSC techniques. In: SPE annual technical conference and exhibition; 1982: Society of Petroleum Engineers.

  5. Millington A, Price D, Hughes R. The use of thermal analysis techniques to obtain information relevant to thein-situ combustion process for enhanced oil recovery. J Therm Anal. 1993;40(1):225–38. doi:10.1007/BF02546573.

    Article  CAS  Google Scholar 

  6. Altun NE, Hicyilmaz C, Kök MV. Effect of particle size and heating rate on the pyrolysis of Silopi asphaltite. J Anal Appl Pyrol. 2003;67(2):369–79. doi:10.1016/S0165-2370(02)00075-X.

    Article  CAS  Google Scholar 

  7. Li J. New insights into the oxidation behaviours of crude oils [Ph.D.]. Ann Arbor: University of Calgary (Canada); 2007.

  8. Kok M, Topa E. Thermal characterization and model-free kinetics of biodiesel sample. J Thermal Anal Calorim. 2015;. doi:10.1007/s10973-015-4814-7.

    Google Scholar 

  9. Drici O, Vossoughi S. Study of the surface area effect on crude oil combustion by thermal analysis techniques. J Pet Technol. 1985;. doi:10.2118/13389-PA.

    Google Scholar 

  10. Kok MV, Hughes R, Price D. High pressure TGA analysis of crude oils. Thermochim Acta. 1996;287:91–9.

    Article  CAS  Google Scholar 

  11. Kok MV, Acar C. Kinetics of crude oil combustion. J Therm Anal Calorim. 2006;83:445–9.

    Article  Google Scholar 

  12. Kok M, Gundogar A. Effect of different clay concentrations on crude oil combustion kinetics by thermogravimetry. J Therm Anal Calorim. 2009;99(3):779–83. doi:10.1007/s10973-009-0377-9.

    Article  Google Scholar 

  13. Kok MV. Characterization of medium and heavy crude oils using thermal analysis techniques. Fuel Process Technol. 2011;92(5):1026–31. doi:10.1016/j.fuproc.2010.12.027.

    Article  CAS  Google Scholar 

  14. Kök MV, Gul KG. Combustion characteristics and kinetic analysis of Turkish crude oils and their SARA fractions by DSC. J Therm Anal Calorim. 2013;114(1):269–75. doi:10.1007/s10973-013-3256-3.

    Article  Google Scholar 

  15. Li J, Mehta SA, Moore RG, Ursenbach MG, Zalewski E, Ferguson H, et al. Oxidation and ignition behaviour of saturated hydrocarbon samples with crude oils using TG/DTG and DTA thermal analysis techniques. 2004;. doi:10.2118/04-07-04.

    Google Scholar 

  16. Nagabhooshana AA. Studies on pyrolysis and combustion behavior of Neilburg oil and derived asphaltenes using a thermogravimetric analyser (TGA) [M.A.Sc.]. Ann Arbor: The University of Regina (Canada); 2005.

  17. Ambalae A, Mahinpey N, Freitag N. Thermogravimetric studies on pyrolysis and combustion behavior of a heavy oil and its asphaltenes. Energy Fuels. 2006;20(2):560–5. doi:10.1021/ef0502812.

    Article  CAS  Google Scholar 

  18. Ranjbar M, Pusch G. Pyrolysis and combustion kinetics of crude oils, asphaltenes and resins in relation to thermal recovery processes. J Anal Appl Pyrol. 1991;20:185–96. doi:10.1016/0165-2370(91)80072-G.

    Article  CAS  Google Scholar 

  19. Kok MV, Gul KG. Thermal characteristics and kinetics of crude oils and SARA fractions. Thermochim Acta. 2013;569:66–70. doi:10.1016/j.tca.2013.07.014.

    Article  CAS  Google Scholar 

  20. Freitag NP, Verkoczy B. Low temperature oxidation of oil in terms of SARA fractions: why simple reaction models do not work. J Can Pet Technol. 2005;44:54–61. doi:10.2118/05-03-05.

    Article  CAS  Google Scholar 

  21. Benham AL, Poettmann FH. The thermal recovery process—An analysis of laboratory combustion data. Trans AIME. 1958;10:83–5.

    CAS  Google Scholar 

  22. Burger JG, Sahuquet BC. Chemical aspects of in situ combustion—heat of combustion and kinetics. Soc Pet Eng. 1972;12:410–22.

    Article  CAS  Google Scholar 

  23. Burger J, Sourieau P, Combarnous M. Thermal methods of oil recovery. Editions OPHRYS; 1985.

  24. Ungerer P, Behar F, Villalba M, Heum OR, Audibert A. Kinetic modelling of oil cracking. Org Geochem. 1988;13(4–6):857–68. doi:10.1016/0146-6380(88)90238-0.

    Article  CAS  Google Scholar 

  25. Sánchez S, Rodríguez MA, Ancheyta J. Kinetic model for moderate hydrocracking of heavy oils. Ind Eng Chem Res. 2005;44(25):9409–13. doi:10.1021/ie050202+.

    Article  Google Scholar 

  26. Yağmur S, Durusoy T. Oil shale combustion kinetics from single thermogravimetric curve. Energy Sources Part A. 2009;31(14):1227–35.

    Article  Google Scholar 

  27. Hamedi Shokrlu Y, Maham Y, Tan X, Babadagli T, Gray M. Enhancement of the efficiency of in situ combustion technique for heavy-oil recovery by application of nickel ions. Fuel. 2013;105:397–407. doi:10.1016/j.fuel.2012.07.018.

    Article  CAS  Google Scholar 

  28. Rezaei M, Schaffie M, Ranjbar M. Thermocatalytic in situ combustion: influence of nanoparticles on crude oil pyrolysis and oxidation. Fuel. 2013;113:516–21. doi:10.1016/j.fuel.2013.05.062.

    Article  CAS  Google Scholar 

  29. Khansari Z, Gates ID, Mahinpey N. Low-temperature oxidation of Lloydminster heavy oil: kinetic study and product sequence estimation. Fuel. 2014;115:534–8.

    Article  CAS  Google Scholar 

  30. Cinar M, Castanier LM, Kovscek AR. Combustion kinetics of heavy oils in porous media. Energy Fuels. 2011;25(10):4438–51. doi:10.1021/ef200680t.

    Article  CAS  Google Scholar 

  31. Glatz G. In-situ combustion kinetics of a central european crude for thermal EOR. 2011/1/1/. SPE: Society of Petroleum Engineers; 2011.

  32. Fan C, Zan C, Zhang Q, Ma D, Chu Y, Jiang H, et al. The oxidation of heavy oil: thermogravimetric analysis and non-isothermal kinetics using the distributed activation energy model. Fuel Process Technol. 2014;119:146–50. doi:10.1016/j.fuproc.2013.10.020.

    Article  CAS  Google Scholar 

  33. Bai F, Sun Y, Liu Y, Li Q, Guo M. Thermal and kinetic characteristics of pyrolysis and combustion of three oil shales. Energy Convers Manag. 2015;97:374–81. doi:10.1016/j.enconman.2015.03.007.

    Article  Google Scholar 

  34. Varfolomeev M, Nagrimanov R, Galukhin A, Vakhin A, Solomonov B, Nurgaliev D, et al. Contribution of thermal analysis and kinetics of Siberian and Tatarstan regions crude oils for in situ combustion process. J Thermal Anal Calorim. 2015;. doi:10.1007/s10973-015-4892-6.

    Google Scholar 

  35. Vyazovkin S. Isoconversional kinetics of thermally stimulated processes. Isoconversional kinetics of thermally stimulated processes. New York: Springer International Publishing; 2015.

    Google Scholar 

  36. Ozbas KE, Hicyilmaz C, Kök MV, Bilgen S. Effect of cleaning process on combustion characteristics of lignite. Fuel Process Technol. 2000;64(1–3):211–20. doi:10.1016/S0378-3820(00)00064-3.

    Article  CAS  Google Scholar 

  37. Richardson MJ, Charsley EL. Chapter 13—Calibration and standardisation in DSC. In: Michael EB, editor. Handbook of thermal analysis and calorimetry. Elsevier Science B.V.; 1998. p. 547–75.

  38. Vyazovkin S, Chrissafis K, Di Lorenzo ML, Koga N, Pijolat M, Roduit B, et al. ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim Acta. 2014;590:1–23. doi:10.1016/j.tca.2014.05.036.

    Article  CAS  Google Scholar 

  39. Kök M, Pokol G, Keskin C, Madarász J, Bagci S. Light crude oil combustion in the presence of limestone matrix. J Therm Anal Calorim. 2004;75(3):781–9. doi:10.1023/B:JTAN.0000027174.56023.fc.

    Article  Google Scholar 

  40. Kok MVK. Thermo-oxidative reactions of crude oils. J Therm Anal Calorim. 2011;105:411–4. doi:10.1007/s10973-010-1117-x.

    Article  CAS  Google Scholar 

  41. Dabbous MK, Fulton PF. Low-temperature-oxidation reaction kinetics and effects on the in-situ combustion process. Soc Pet Eng J. 1974;. doi:10.2118/4143-PA.

    Google Scholar 

  42. Khansari Z. Low temperature oxidation of heavy crude oil: experimental study and reaction modeling. Calgary: University of Calgary; 2014.

    Google Scholar 

  43. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38(11):1881–6.

    Article  CAS  Google Scholar 

  44. Flynn JH, Wall LA. General treatment of the thermogravimetry of polymers. J Res Nat Bur Stand. 1966;70(6):487–523.

    Article  CAS  Google Scholar 

  45. Doyle C. Estimating isothermal life from thermogravimetric data. J Appl Polym Sci. 1962;6(24):639–42.

    Article  CAS  Google Scholar 

  46. Starink MJ. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta. 2003;404(1–2):163–76. doi:10.1016/S0040-6031(03)00144-8.

    Article  CAS  Google Scholar 

  47. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520(1):1–19.

    Article  CAS  Google Scholar 

  48. Pu W, Pang S, Jia H, Yu D, Liu M, Wang C. Using DSC/TG/DTA techniques to reevaluate the effect of clays on crude oil oxidation kinetics. J Petrol Sci Eng. 2015;. doi:10.1016/j.petrol.2015.07.014.

    Google Scholar 

  49. Rezaei M, Schaffie M, Ranjbar M. Kinetic study of catalytic in-situ combustion processes in the presence of nanoparticles. Energy Sour Recovery Util Environ Eff. 2014;36(6):605–12.

    CAS  Google Scholar 

  50. Khansari Z, Gates ID, Mahinpey N. Detailed study of low-temperature oxidation of an Alaska heavy oil. Energy Fuels. 2012;26(3):1592–7.

    Article  CAS  Google Scholar 

  51. Mahinpey N, Murugan P, Mani T. Comparative kinetics and thermal behavior: the study of crude oils derived from Fosterton and Neilburg fields of Saskatchewan. Energy Fuels. 2010;24:1640–5.

    Article  CAS  Google Scholar 

  52. Gundogar AS, Kok MV. Thermal characterization, combustion and kinetics of different origin crude oils. Fuel. 2014;123:59–65. doi:10.1016/j.fuel.2014.01.058.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milad Karimian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimian, M., Schaffie, M. & Fazaelipoor, M.H. Determination of activation energy as a function of conversion for the oxidation of heavy and light crude oils in relation to in situ combustion. J Therm Anal Calorim 125, 301–311 (2016). https://doi.org/10.1007/s10973-016-5439-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5439-1

Keywords

Navigation