Skip to main content
Log in

Initial stages of oxidation of aluminum powder in oxygen

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Oxidation of aluminum powders is known to include several stages, corresponding to growth of different polymorphs of alumina. The initial oxide layer is amorphous, which transfers to γ-Al2O3 at elevated temperatures and greater oxide thicknesses. This work focuses on quantitative characterization of oxidation for thin initial oxide layers occurring at relatively low temperatures. The experiments include different types of thermo-gravimetric (TG) measurements with increased amounts of powder loaded for greater sensitivity. Modulated and isothermal TG measurements were found to be less useful than constant heating rate measurements. Results were processed using both, an explicit oxidation model and a model-free isoconversion method. The latter approach was more productive in identifying the activation energy of oxidation. Using the activation energy as a function of reaction progress, the pre-exponent was also determined as a function of reaction progress assuming a diffusion-limited reaction mechanism. The reaction kinetics was validated by comparison between predicted and measured oxidation rates for nanoaluminum powders reported in the literature. Finally, the oxidation model was combined with a heat transfer model to describe ignition of aluminum particles exposed to a heated oxidizing environment. A sharp increase in the ignition temperature from 850 to 2260 K is predicted as the particle size increases from 0.3 to 1.2 µm. The results are found to be sensitive to the assumed initial oxide thickness (2.5 nm); they are also somewhat affected by the value of thermal accommodation coefficient used in the heat transfer model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Dong H, Zhumei S. Study of the fast reaction characteristics of aluminized PETN explosive powders. Combust Flame. 1996;105:428–30.

    Article  CAS  Google Scholar 

  2. King MK. Aluminum combustion in a solid rocket motor environment. Proc Combust Inst. 2009;32(2):2107–14.

    Article  CAS  Google Scholar 

  3. Ba SH, Jiao QJ, Ren H. Effect of particle sizes of aluminum powder on radiation intensity of flash pyrotechnic composites. Hanneng Cailiao/Chin J Energ Mater. 2008;16:219–21.

    CAS  Google Scholar 

  4. Price EW. Combustion of aluminum in solid propellant flames. AGARD Conf Proc. 1979;14(1–14):15.

    Google Scholar 

  5. Price EW. Combustion of metallized propellants, vol. 90. New York: AIAA; 1984. p. 479–513.

    Google Scholar 

  6. Chakravarthy SR, Freeman JM, Price EW, Sigman RK. Combustion of propellants with ammonium dinitramide. Propellants Explos Pyrotech. 2004;29:220–30.

    Article  CAS  Google Scholar 

  7. Trunov MA, Schoenitz M, Zhu X, Dreizin EL. Effect of polymorphic phase transformations in Al2O3 film on oxidation kinetics of aluminum powders. Combust Flame. 2005;140:310–8.

    Article  CAS  Google Scholar 

  8. Trunov MA, Schoenitz M, Dreizin EL. Ignition of aluminum powders under different experimental conditions. Propellants Explos Pyrotech. 2005;30:36–43.

    Article  CAS  Google Scholar 

  9. Eisenreich N, Fietzek H, Del Mar Juez-Lorenzo M, Kolarik V, Koleczko A, Weiser V. On the mechanism of low temperature oxidation for aluminum particles down to the nano-scale. Propellants Explos Pyrotech. 2004;29:137–45.

    Article  CAS  Google Scholar 

  10. Park K, Lee D, Rai A, Mukherjee D, Zachariah MR. Size-resolved kinetic measurements of aluminum nanoparticle oxidation with single particle mass spectrometry. J Phys Chem B. 2005;109:7290–9.

    Article  CAS  Google Scholar 

  11. Zhu X, Schoenitz M, Dreizin EL. Aluminum powder oxidation in Co2 and Mixed Co2/O2 environments. J Phys Chem C. 2009;113:6768–73.

    Article  CAS  Google Scholar 

  12. Schoenitz M, Chen CM, Dreizin EL. Oxidation of aluminum particles in the presence of water. J Phys Chem B. 2009;113:5136–40.

    Article  CAS  Google Scholar 

  13. Trunov MA, Schoenitz M, Dreizin EL. Effect of polymorphic phase transformations in alumina layer on ignition of aluminium particles. Combust Theory Model. 2006;10:603–23.

    Article  CAS  Google Scholar 

  14. Schoenitz M, Patel B, Agboh O, Dreizin EL. Oxidation of aluminum powders at high heating rates. Thermochim Acta. 2010;507–508:115–22.

    Article  Google Scholar 

  15. Zhang S, Dreizin EL. Reaction interface for heterogeneous oxidation of aluminum powders. J Phys Chem C. 2013;117:14025–31.

    Article  CAS  Google Scholar 

  16. Saif MTA, Zhang S, Haque A, Hsia KJ. Effect of native Al2O3 on the elastic response of nanoscale Al films. Acta Mater. 2002;50:2779–86.

    Article  CAS  Google Scholar 

  17. Jeurgens LPH, Sloof WG, Tichelaar FD, Mittemeijer EJ. Structure and morphology of aluminium-oxide films formed by thermal oxidation of aluminium. Thin Solid Films. 2002;418:89–101.

    Article  CAS  Google Scholar 

  18. Ramaswamy AL, Kaste P. A “nanovision” of the physiochemical phenomena occurring in nanoparticles of aluminum. J Energ Mater. 2005;23:1–25.

    Article  CAS  Google Scholar 

  19. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. Ictac kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  20. Vyazovkin S. Modification of the integral isoconversional method to account for variation in the activation energy. J Comput Chem. 2001;22:178–83.

    Article  CAS  Google Scholar 

  21. Aumann CE, Skofronick GL, Martin JA. Oxidation behavior of aluminum nanopowders. J Vac Sci Technol B. 1995;13:1178–83.

    Article  CAS  Google Scholar 

  22. Trunov MA, Umbrajkar SM, Schoenitz M, Mang JT, Dreizin EL. Oxidation and melting of aluminum nanopowders. J Phys Chem B. 2006;110:13094–9.

    Article  CAS  Google Scholar 

  23. Kong C, Yao Q, Yu D, Li S. Combustion characteristics of well-dispersed aluminum nanoparticle streams in post flame environment. Proc Combust Inst. 2015;35:2479–86.

    Article  CAS  Google Scholar 

  24. Chen L, Song W, Lv J, Chen X, Xie C. Research on the methods to determine metallic aluminum content in aluminum nanoparticles. Mater Chem Phys. 2010;120:670–5.

    Article  CAS  Google Scholar 

  25. Coulet MV, Rufino B, Esposito PH, Neisius T, Isnard O, Denoyel R. Oxidation mechanism of aluminum nanopowders. J Phys Chem C. 2015;119:25063–70.

    Article  CAS  Google Scholar 

  26. Yao W, Guangsheng G, Fei W, Jun W. Fluidization and agglomerate structure of SiO2 nanoparticles. Powder Technol. 2002;124:152–9.

    Article  Google Scholar 

  27. Danilenko I, Konstantinova T, Pilipenko N, Volkova G, Glasunova V. Estimation of agglomeration degree and nanoparticles shape of zirconia nanopowders. Part Part Syst Charact. 2011;28:13–8.

    Article  Google Scholar 

  28. To D, Dave R, Yin X, Sundaresan S. Deagglomeration of nanoparticle aggregates via rapid expansion of supercritical or high-pressure suspensions. AIChE J. 2009;55:2807–26.

    Article  CAS  Google Scholar 

  29. Liu X, Zhang Q. Influence of turbulent flow on the explosion parameters of micro- and nano-aluminum powder–air mixtures. J Hazard Mater. 2015;299:603–17.

    Article  CAS  Google Scholar 

  30. Wang H, Zachariah MR, Xie L, Rao G. Ignition and combustion characterization of nano-Al–Ap and nano-Al–CuO–Ap micro-sized composites produced by electrospray technique. Energy Procedia. 2015;66:109–12.

    Article  CAS  Google Scholar 

  31. Staiger M, Bowen P, Ketterer J, Bohonek J. Particle size distribution measurement and assessment of agglomeration of commercial nanosized ceramic particles. J Dispers Sci Technol. 2002;23:619–30.

    Article  CAS  Google Scholar 

  32. Mohan S, Trunov MA, Dreizin EL. Heating and ignition of metal particles in the transition heat transfer regime. J Heat Transf. 2008;130:104505/1–5.

    Article  CAS  Google Scholar 

  33. Liu F, Daun KJ, Snelling DR, Smallwood GJ. Heat conduction from a spherical nano-particle: status of modeling heat conduction in laser-induced incandescence. Appl Phys B. 2006;83:355–82.

    Article  CAS  Google Scholar 

  34. Bazyn T, Lynch P, Krier H, Glumac N. Combustion Measurements of fuel-rich aluminum and molybdenum oxide nanocomposite mixtures. Propellants Explos Pyrotech. 2010;35:93–99.

    Article  CAS  Google Scholar 

  35. Allen D, Krier H, Glumac N. Heat transfer effects in nano-aluminum combustion at high temperatures. Combust Flame. 2014;161:295–302.

    Article  CAS  Google Scholar 

  36. Altman IS, Lee D, Song J, Choi M. Experimental estimate of energy accommodation coefficient at high temperatures. Phys Rev E Stat Nonlin Soft Matter Phys. 2001;64:052202/1–4.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Defense Threat Reduction Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward L. Dreizin.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, H., Schoenitz, M. & Dreizin, E.L. Initial stages of oxidation of aluminum powder in oxygen. J Therm Anal Calorim 125, 129–141 (2016). https://doi.org/10.1007/s10973-016-5369-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5369-y

Keywords

Navigation