Skip to main content
Log in

Non-isothermal crystallization kinetics for CaO–Fe2O3 system

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The CaO–Fe2O3 system is the most significant liquid phase for fluxed sinter. However, the crystallization kinetics of CaO·Fe2O3 (CF), which directly contributes to the physical and metallurgical properties of sinter, is rarely reported. In this study, the crystallization kinetics of CaO·Fe2O3 system was analyzed using the mean of non-isothermal crystallization kinetics. Various cooling rates (10, 15, 20, and 25 K/min) were investigated for the crystallization of the samples. Results showed that the crystallization process mainly includes two reaction stages, namely liquid–solid transition and peritectic crystallization of CaO·Fe2O3. The activation energy of the two stages was determined using Ozawa and KAS analyses, where the value of E α lies at −382.38, −373.83 kJ mol−1 (Ozawa model) and −455.39, −480.93 kJ mol−1 (KAS model), and the same model function: f(α) = (1−α)2 for the two stages was determined according to Malek analysis. The reaction of CaO·Fe2O3 crystallization is promoted and the liquid–solid transition is inhibited as the cooling rate increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Guo X. The formation and mineralogy of Calcium ferrite in sinter process. Press of Metallurgy Industry. 1999.

  2. Pan W, Keng WU, Zhao X, Min DJ. Reduction kinetics of Shougang iron ore sinter, J Univ Sci Technol Beijing. 2013.

  3. Xue Q, Lan R, Wang J, Han Y, Wang L. Kinetics analysis of sinter-reduction base on oxygen blast furnace. J Chongqing Univ. 2012;35:67–74.

    CAS  Google Scholar 

  4. Zhao Y, Keng WU, Pan W, Liu QH. Investigation of the reduction kinetics process of sinter ore by sectional stepwise method. J Northeast Univ. 2013;34:1282–6.

    CAS  Google Scholar 

  5. Webster NAS, Pownceby MI, Madsen IC, Studer AJ, Manuel JR, Kimpton JA. Fundamentals of Silico-Ferrite of Calcium and Aluminum (SFCA) and SFCA-I iron ore sinter bonding phase formation: effects of CaO:SiO2 ratio. Metall Mater Trans B. 2014;45:2097–105.

    Article  CAS  Google Scholar 

  6. Zhang F, Sheng-Li AN, Luo GP, Wang YC. Influencing factors in formation characteristics of SFCA for low silica sinters of Baogang. J Iron Steel Res. 2012;24:24–8.

    Google Scholar 

  7. Xia L, Li X, Zhang J, Yao C, Guo J, Zhang C. Effect of Manganese on the formation mechanisms of Silico-Ferrite of Calcium and Aluminum (SFCA). New York: Wiley; 2015.

    Book  Google Scholar 

  8. Wang F. Formation characteristics of Calcium Ferrite in low silicon sinter. J Iron Steel Res Int. 2011;18:1–7.

    Google Scholar 

  9. Ahsan S, Mukherjee T, Whiteman J. Structure of fluxed sinter. Ironmak Steelmak. 1983;10:54–64.

    CAS  Google Scholar 

  10. Dawson P, Ostwald J, Hayes K. Influence of alumina on development of complex calcium ferrites in iron-ore sinters. Trans Inst Min Metall Sect C-Miner Process Extr Metall. 1985;94:71–8.

    CAS  Google Scholar 

  11. Hancart J, Leroy V, Bragard A. CNRM Report. DS. 1967; 24:3–7.

  12. Hsieh LH, Whiteman J. Effect of oxygen potential on mineral formation in lime-fluxed iron ore sinter. ISIJ Int. 1989;29:625–34.

    Article  CAS  Google Scholar 

  13. Chaigneau R. Complex calcium ferrites in the blast furnace process, Delft University of Technology. 1994.

  14. Flynn JH. Thermal analysis kinetics—past, present and future. Thermochim Acta. 1992;203:519–26.

    Article  CAS  Google Scholar 

  15. Vyazovkin S, Wight CA. Isothermal and non-isothermal kinetics of thermally stimulated reactions of solids. Int Rev Phys Chem. 1998;17:407–33.

    Article  CAS  Google Scholar 

  16. Bertol CD, Cruz AP, Stulzer HK, Murakami FS, Silva MAS. Thermal decomposition kinetics and compatibility studies of primaquine under isothermal and non-isothermal conditions. J Therm Anal Calorim. 2010;102(1):187–92.

    Article  CAS  Google Scholar 

  17. Cides LCS, Araújo AAS, Santos-Filho M, Matos JR. Thermal behaviour, compatibility study and decomposition kinetics of glimepiride under isothermal and non-isothermal conditions. J Therm Anal Calorim. 2006;84:441–5.

    Article  CAS  Google Scholar 

  18. Achilias DS, Papageorgiou GZ, Karayannidis GP. Evaluation of the crystallisation kinetics of poly(propylene terephthalate) using DSC and polarized light microscopy. J Therm Anal Calorim. 2006;86:791–5.

    Article  CAS  Google Scholar 

  19. Pilawka R, Paszkiewicz S, Roslaniec Z. Thermal degradation kinetics of PET/SWCNTs nanocomposites prepared by the in situ polymerization. J Therm Anal Calorim. 2014;115:451–60.

    Article  CAS  Google Scholar 

  20. Georgieva V, Zvezdova D, Vlaev L. Non-isothermal kinetics of thermal degradation of chitin. J Therm Anal Calorim. 2013;111:763–71.

    Article  CAS  Google Scholar 

  21. Salama NN, Mohammad MA, Fattah TA. Thermal behavior study and decomposition kinetics of amisulpride under non-isothermal and isothermal conditions. J Therm Anal Calorim. 2015;120:953–8.

    Article  CAS  Google Scholar 

  22. Dickinson C, Heal G. A review of the ICTAC kinetics project, 2000: part 2. Non-isothermal results. Thermochim Acta. 2009;494:15–25.

    Article  CAS  Google Scholar 

  23. Vyazovkin S. Alternative description of process kinetics. Thermochim Acta. 1992;211:181–7.

    Article  CAS  Google Scholar 

  24. Šesták J, Berggren G. Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures. Thermochim Acta. 1971;3:1–12.

    Article  Google Scholar 

  25. Ozawa T. Thermal analysis: review and prospect. Thermochim Acta. 2000;355:35–42.

    Article  CAS  Google Scholar 

  26. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  27. Rongzu Hu FZ, Thermal analysis kinetics. Sci Press. 2001.

  28. Doyle C. Kinetic analysis of thermogravimetric data. J Appl Polym Sci. 1961;5:285–92.

    Article  CAS  Google Scholar 

  29. Frank-Kamenetskii DAB. Diffusion and heat exchange in chemical kinetics. J Frankl Inst. 1956;261:381–2.

    Article  Google Scholar 

  30. Málek J. A computer program for kinetic analysis of non-isothermal thermoanalytical data. Thermochim Acta. 1989;138:337–46.

    Article  Google Scholar 

  31. Dollimore D, Tong P, Alexander KS. The kinetic interpretation of the decomposition of calcium carbonate by use of relationships other than the Arrhenius equation. Thermochim Acta. 1996;282:13–27.

    Article  Google Scholar 

  32. Popescu C. Integral method to analyze the kinetics of heterogeneous reactions under non-isothermal conditions a variant on the Ozawa-Flynn-Wall method. Thermochim Acta. 1996;285:309–23.

    Article  CAS  Google Scholar 

  33. Zhang J, Ren N, Bai J. Non-isothermal decomposition reaction Kinetics of the Magnesium Oxalate Dihydrate. Chin J Chem. 2006;24:360–4.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are especially grateful to the financial support of NSFC (Natural Science Foundation of China, No. 51104192) and the Fundamental Research Funds for the Central Universities (No. CDJZR14 13 55 01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuewei Lv.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, C., Lv, X., Chen, Y. et al. Non-isothermal crystallization kinetics for CaO–Fe2O3 system. J Therm Anal Calorim 124, 509–518 (2016). https://doi.org/10.1007/s10973-015-5105-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-5105-z

Keywords

Navigation